Hands-on Distributional Semantics

Part 5: DS beyond NLP - Free association norms

Stefan Evert¹ & Gabriella Lapesa² with Alessandro Lenci³ and Marco Baroni⁴

¹Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany ²University of Stuttgart, Germany ³University of Pisa, Italy ⁴University of Trento, Italy

http://wordspace.collocations.de/doku.php/course:esslli2021:start

Copyright © 2009-2021 Evert, Lapesa, Lenci & Baroni | Licensed under CC-by-sa version 3.0

wordspace.collocations.de

Outline

Distributional semantics & cognitive modelling Evaluation tasks: cognitive plausibility

Free association norms

The FAST task

A problem with standard tasks

FAST: Data set and tasks

FAST: Experiments

Outlook & hands-on exercise

► Why? – Because we want to know whether DS captures the mental lexical knowledge of human speakers!

- ► Why? Because we want to know whether DS captures the mental lexical knowledge of human speakers!
- ► Task: DSM predicts reaction times in **priming experiments** (Hare *et al.* 2009; Lapesa & Evert 2013)
 - often just experimental items used for multiple-choice task (e.g. Padó & Lapata 2007; Herdağdelen et al. 2009)
 - ▶ cf. tasks constructed from Lazaridou2013 yesterday
 - data sets of experimental items: GEK_Items, SPP_Items

- ▶ Why? Because we want to know whether DS captures the mental lexical knowledge of human speakers!
- ► Task: DSM predicts reaction times in **priming experiments** (Hare *et al.* 2009; Lapesa & Evert 2013)
 - often just experimental items used for multiple-choice task (e.g. Padó & Lapata 2007; Herdağdelen et al. 2009)
 - ▶ cf. tasks constructed from Lazaridou2013 yesterday
 - data sets of experimental items: GEK_Items, SPP_Items
- Task: DSM predicts EEG potentials (Murphy et al. 2009) or fMRI brain activation levels (Mitchell et al. 2008)
 - huge datasets, but tiny and selective vocabulary

- ► Why? Because we want to know whether DS captures the mental lexical knowledge of human speakers!
- ► Task: DSM predicts reaction times in **priming experiments** (Hare *et al.* 2009; Lapesa & Evert 2013)
 - often just experimental items used for multiple-choice task (e.g. Padó & Lapata 2007; Herdağdelen et al. 2009)
 - ▶ cf. tasks constructed from Lazaridou2013 yesterday
 - data sets of experimental items: GEK_Items, SPP_Items
- Task: DSM predicts EEG potentials (Murphy et al. 2009) or fMRI brain activation levels (Mitchell et al. 2008)
 - huge datasets, but tiny and selective vocabulary
- Task: DSM predicts human free associations
 - often considered a "window into the mental lexicon"
 - free association norms available for thousands of cue words

Outline

Distributional semantics & cognitive modelling

Evaluation tasks: cognitive plausibility

Free association norms

The FAST task

A problem with standard tasks

FAST: Data set and tasks

FAST: Experiments

Outlook & hands-on exercise

... a cue into the organization of the mental lexicon?

Which words come to your mind if you hear ...

ightharpoonup whisky ightarrow

... a cue into the organization of the mental lexicon?

Which words come to your mind if you hear ...

- ightharpoonup whisky ightharpoonup gin, drink, scotch, bottle, soda
- ightharpoonup giraffe ightarrow

... a cue into the organization of the mental lexicon?

Which words come to your mind if you hear ...

- ightharpoonup whisky ightharpoonup gin, drink, scotch, bottle, soda
- lacktriangle giraffe ightarrow neck, animal, zoo, long, tall

... a cue into the organization of the mental lexicon?

Which words come to your mind if you hear ...

- ightharpoonup whisky ightharpoonup gin, drink, scotch, bottle, soda
- lacktriangle giraffe ightarrow neck, animal, zoo, long, tall
- Hypotheses concerning the nature of the underlying process:
 - Result of learning-by-contiguity (James 1890)

```
\bowtie syntagmatic (1st-order)
```

▶ Result of symbolic processes which make use of complex semantic structures (Clark 1970) paradigmatic (2nd-order)

... a cue into the organization of the mental lexicon?

Which words come to your mind if you hear . . .

- ightharpoonup whisky ightharpoonup gin, drink, scotch, bottle, soda
- ightharpoonup giraffe ightarrow neck, animal, zoo, long, tall
- Hypotheses concerning the nature of the underlying process:
 - Result of learning-by-contiguity (James 1890)

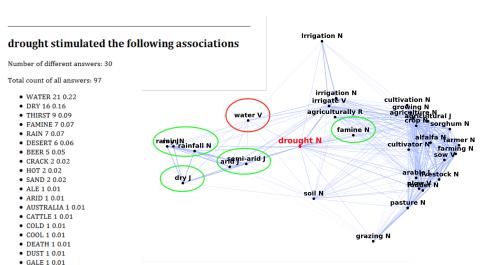
```
\bowtie syntagmatic (1st-order)
```

- ► Result of symbolic processes which make use of complex semantic structures (Clark 1970)

 paradigmatic (2nd-order)
- Large collections available
 - Edinburgh Associative Thesaurus (EAT)
 8210 stimuli, 100 subjects (Kiss et al. 1973)
 - University of South Florida Free Association Norms (USF)
 5019 stimuli, 6000 subjects (Nelson et al. 2004)

Free associations in a DSM

Drought in EAT vs. DSM



MONSOON 1 0.01

4 D F 4 D F 4 D F 4 D F

Free associations & co-occurrence data

Previous work

- ► Wettler *et al.* (2005)
 - Data: subset of EAT (100 stimuli)
 - ▶ Task: prediction of the most common free associate
 - ► Model: first-order model, BNC, large window (20 words)
 - Result: human associative responses can be predicted from contiguities between words in language use (collocations)
- ESSLLI 2008 Shared Task
 - Data: subset of EAT (a different set of 100 stimuli)
 - ► Task 1: discrimination btw. the most common associate and hapax/random distractors → multiple choice
 - ▶ Task 2: prediction of the most common free associate
 - Result: first-order models (collocations) are better than second-order models (DSMs)

Outline

Distributional semantics & cognitive modelling

Evaluation tasks: cognitive plausibility

Free association norms

The FAST task

A problem with standard tasks

FAST: Data set and tasks

FAST: Experiments

Outlook & hands-on exercise

Problems of standard tasks & data sets

Problems with semantic interpretation of DSMs don't only stem from evaluation methodology . . .

... data sets can be problematic as well!

Problems of standard tasks & data sets

Problems with semantic interpretation of DSMs don't only stem from evaluation methodology . . .

... data sets can be problematic as well!

Two major problems:

- DSMs may exploit contingent properties of the task
 - random fillers as distractors ("controls")
 - recognize random word pairs rather than semantic relations
 - choice of clearly separated categories and prototypical exemplars in noun clustering task (ESSLLI 2008)
 - much harder to identify categories in general word list
 - typical superordinate-level words in hypernym detection task
 - recognize "typical hypernym" in a multiple-choice setting
- Data set size too small
 - ▶ e.g. 97.5% accuracy on 80 TOEFL items → over-fitting

The CogALex-V Shared Task (Santus et al. 2016)

- Aim: better linguistic understanding of DS from identification of specific semantic relations
- ▶ Data: 747 target words with approx. 10 candidate relata each
 - training set: 318 targets, 3054 word pairs
 - test set: 429 targets, 4260 word pairs

The CogALex-V Shared Task (Santus et al. 2016)

- ► Aim: better linguistic understanding of DS from identification of specific **semantic relations**
- Data: 747 target words with approx. 10 candidate relata each
 - ▶ training set: 318 targets, 3054 word pairs
 - test set: 429 targets, 4260 word pairs
- Subtask 1: related vs. unrelated word pairs
 - unrelated pairs are random fillers
 - relatively easy: $F_1 = 79.0\%$ (best system)

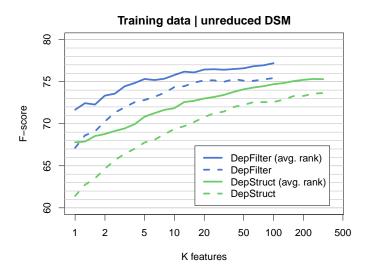
The CogALex-V Shared Task (Santus et al. 2016)

- ► Aim: better linguistic understanding of DS from identification of specific semantic relations
- ▶ Data: 747 target words with approx. 10 candidate relata each
 - training set: 318 targets, 3054 word pairs
 - ▶ test set: 429 targets, 4260 word pairs
- Subtask 1: related vs. unrelated word pairs
 - unrelated pairs are random fillers
 - relatively easy: $F_1 = 79.0\%$ (best system)
- Subtask 2: distinguish between semantic relations
 - \triangleright SYN: w_2 can be used with same meaning as w_1
 - \triangleright ANT: w_2 can be used as the opposite of w_1
 - ► HYPER: w₁ is a kind of w₂
 - ▶ PART OF: w_1 is a part of w_2
 - ▶ RANDOM: no relation (random word + manual check)
 - relatively hard: $F_1 = 44.5\%$ (best system: deep learning)

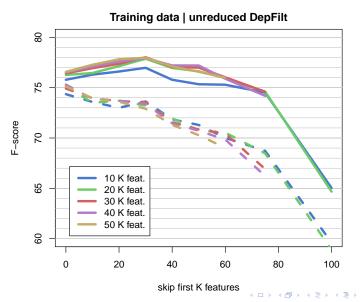
Mach 5 at CogALex 2016 (Evert 2016)

- Mach 5 participated in the CogALex-V Shared Task as a traditional "count" (non-neural) DSM
 - ▶ 10-billion-word Web corpus (Schäfer & Bildhauer 2012)
 - ▶ syntactic dependencies from C&C parser (Curran *et al.* 2007)
 - ▶ 26.5k target words, up to 300k feature dimensions
 - other parameters set according to Lapesa & Evert (2014)
- ▶ Parameter optimization on training data (subtask 1)
- ► Machine learning on optimized representations (subtask 2)
 - ▶ learns relevance weights for 600 latent SVD dimensions
 - best results from combination of different SVD spaces
- Try it yourself: http://www.collocations.de/data/#mach5

Mach 5: Parameter optimization



Mach 5: Parameter optimization



Mach 5: Parameter optimization



 $F_1 = 77.88\%$ for related vs. unrelated (best: 79.0%)

However . . .

 $F_1 = 77.88\%$ for related vs. unrelated (best: 79.0%)

However . . .

Parameter optimization yields surprising result:
 best model uses < 50k features with relatively low frequency

 $F_1 = 77.88\%$ for related vs. unrelated (best: 79.0%)

However . . .

- Parameter optimization yields surprising result:
 best model uses < 50k features with relatively low frequency
- ▶ Nearest neighbours are unsatisfactory, e.g. for play: playing (54.1°), star (62.8°), reunite (62.9°), co-star (64.3°), reprise (64.4°), player (66.7°), score (68.5°), audition (69.2°), sing (69.4°), actor (69.5), understudy (69.6), game (70.3), ...

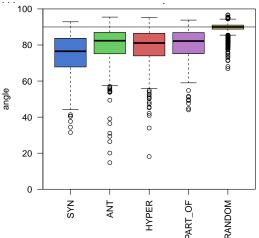
 $F_1 = 77.88\%$ for related vs. unrelated (best: 79.0%)

However . . .

- Parameter optimization yields surprising result:
 best model uses < 50k features with relatively low frequency
- ▶ Nearest neighbours are unsatisfactory, e.g. for *play:* playing (54.1°), star (62.8°), reunite (62.9°), co-star (64.3°), reprise (64.4°), player (66.7°), score (68.5°), audition (69.2°), sing (69.4°), actor (69.5), understudy (69.6), game (70.3), . . .
- ▶ Why is Mach 5 still doing so well in the task, then?

Mach 5: What is going wrong?

A disturbing result ...



- DSM has learned to recognize random word pairs (at 90°)!
- We need better data sets with high-quality distractors!

Outline

Distributional semantics & cognitive modelling

Evaluation tasks: cognitive plausibility

Free association norms

The FAST task

A problem with standard tasks

FAST: Data set and tasks

FAST: Experiments

Outlook & hands-on exercise

The Free ASsociation Task (FAST) data set Preprocessing

1. Starting point: EAT (8210 stimuli), USF (5019 stimuli)

Preprocessing

- 1. Starting point: EAT (8210 stimuli), USF (5019 stimuli)
- 2. Out-of-context POS tagging
 - Annotate items in EAT and USF (stimuli and responses) with part of speech information
 - ► How? Most frequent POS in Web corpus ENCOW: publicly available 10-billion-word Web corpus → replicability

Preprocessing

- 1. Starting point: EAT (8210 stimuli), USF (5019 stimuli)
- 2. Out-of-context POS tagging
 - Annotate items in EAT and USF (stimuli and responses) with part of speech information
 - ► How? Most frequent POS in Web corpus ENCOW: publicly available 10-billion-word Web corpus → replicability
- 3. Out-of-context lemmatization
 - morpha, a robust morphological analyzer http://users.sussex.ac.uk/~johnca/morph.html
 - lemmatization of unknown words based on POS tag

Preprocessing

- 1. Starting point: EAT (8210 stimuli), USF (5019 stimuli)
- 2. Out-of-context POS tagging
 - ► Annotate items in EAT and USF (stimuli and responses) with part of speech information
 - ▶ How? Most frequent POS in Web corpus ENCOW: publicly available 10-billion-word Web corpus → replicability
- Out-of-context lemmatization
 - morpha, a robust morphological analyzer http://users.sussex.ac.uk/~johnca/morph.html
 - lemmatization of unknown words based on POS tag
- 4. Annotation with frequency information
 - frequency lists from ENCOW (lemmatised with morpha)

17 / 40

Item selection

For each stimulus in EAT (8210) and USF (5019) select a:

(multiwords, numbers, closed-class words, and other words that do not occur in ENCOW were discarded)

Item selection

For each stimulus in EAT (8210) and USF (5019) select a:

FIRST: the most common associate response

(multiwords, numbers, closed-class words, and other words that do not occur in ENCOW were discarded)

The Free ASsociation Task (FAST) data set

Item selection

For each stimulus in EAT (8210) and USF (5019) select a:

- ► FIRST: the most common associate response
- HAPAX: a response generated for the target once
 - or twice for USF (hapax responses are omitted there)
 - ▶ if several HAPAX candidates are available, pick the one whose lemma frequency matches most closely that of FIRST

(multiwords, numbers, closed-class words, and other words that do not occur in ENCOW were discarded)

The Free ASsociation Task (FAST) data set

Item selection

For each stimulus in EAT (8210) and USF (5019) select a:

- ► FIRST: the most common associate response
- ► HAPAX: a response generated for the target once
 - or twice for USF (hapax responses are omitted there)
 - if several HAPAX candidates are available, pick the one whose lemma frequency matches most closely that of FIRST
- ▶ RANDOM, by randomly picking a word which was among the top 25% associates *of another stimulus* (and produced at least 5 times). If possible:
 - match lemma frequency of RANDOM and FIRST
 - ▶ try to use each RANDOM only once

(multiwords, numbers, closed-class words, and other words that do not occur in ENCOW were discarded)

The FAST data set

Final data set

- \triangleright EAT subset: **3836** test items + **3774** training items
- ► USF subset: **2359** test items + **2360** training items
- ► Item = (STIMULUS, FIRST, HAPAX, RANDOM)
- ► Each stimulus and candidate response provided as lowercased word form and POS-disambiguated lemma
 - + ENCOW frequency information
 - + # test subjects who produced response
- ▶ Included as FAST in package wordspaceEval

The FAST dataset

The new EAT task isn't perfect either . . . yet

- Guessing POS from corpus doesn't always work
 - lacktriangledown e.g. $\mathit{fit}_{\mathsf{VERB}} \to \mathit{epileptic}_{\mathsf{ADJ}}, \ \mathit{aristocracy}_{\mathsf{NOUN}} \to \mathit{lords}_{\mathsf{NAME}}$
 - lacktriangle but very few lemmatization errors (e.g. $\emph{daiquiri}
 ightarrow \emph{daiquirus}$)

The FAST dataset

The new EAT task isn't perfect either . . . yet

- Guessing POS from corpus doesn't always work
 - lacktriangledown e.g. $\mathit{fit}_{\mathsf{VERB}} o \mathit{epileptic}_{\mathsf{ADJ}}, \mathit{aristocracy}_{\mathsf{NOUN}} o \mathit{lords}_{\mathsf{NAME}}$
 - lacktriangle but very few lemmatization errors (e.g. daiquiri ightarrow daiquirus)
- Colloquialisms and British slang
 - e.g. $bod_{NOUN} \rightarrow person_{NOUN}$ (rare in written corpus)
 - but Web corpus has Welsh bod 'to be' mistagged as noun
 - ► DSM neighbours: yn, hynny, mewn, hwn, gyfer, ..., 49. bloke, techy_{NOUN}, nus, hon, ..., 60. guy, mai, geezer, ...
 - ▶ another example is mellow_{ADJ} → yellow_{ADJ}

The FAST tasks

Task 1: multiple-choice

► Given a stimulus and a <FIRST, HAPAX, RANDOM> triple, determine which of the three candidates is FIRST.

▶ Stimulus: *accept*, < *receive*, *love*, *soul*>

Performance: accuracy

▶ Baseline: 33.3%

The FAST tasks

Task 2: open-vocabulary lexical access

- ▶ Given a stimulus (e.g., accept), predict FIRST (receive) out of a candidate set (all FIRST: USF=1197, EAT=1633)
- ▶ Performance: two measures
 - Soft accuracy: average over reciprocal rank (1/r) of the true FIRST associate, as a percentage.
 - similar to accuracy of predicting first associate, but awards partial points for almost correct guesses
 - ★ always > top-1 accuracy
 - ▶ Log rank: geometric mean of r across all stimuli.
 - ★ corresponds to average over log r
 - better differentiation for models that rarely get the correct answer (and hence score low on soft accuracy)
- Baselines
 - ▶ Soft accuracy: USF=0.64% and EAT=0.49%
 - ► Log rank: USF=442.0 and EAT=602.4

Outline

Distributional semantics & cognitive modelling

Evaluation tasks: cognitive plausibility

Free association norms

The FAST task

A problem with standard tasks

FAST: Data set and tasks

FAST: Experiments

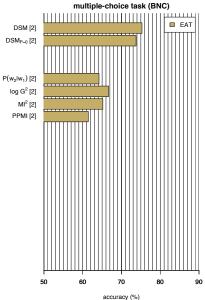
Outlook & hands-on exercise

- ▶ **DSMs (second-order)**: symmetric span of 2 vs. 10 words, other parameters set according to Lapesa & Evert (2014).
 - ▶ we experiment with Caron *P* (Bullinaria & Levy 2012)
 - ightharpoonup P = 0 equalizes contributions of SVD dimensions

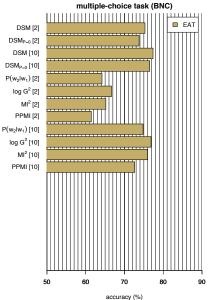
- ▶ **DSMs** (second-order): symmetric span of 2 vs. 10 words, other parameters set according to Lapesa & Evert (2014).
 - ▶ we experiment with Caron P (Bullinaria & Levy 2012)
 - P = 0 equalizes contributions of SVD dimensions
- ► Collocations (first-order): symmetric span, 2 vs. 10 words, with four different association measures (Evert 2008)
 - conditional probability $P(w_2|w_1)$
 - ▶ log-likelihood log G^2 (popular for collocations)
 - ▶ $\text{MI}^2 = \log_2 \frac{O^2}{F} = \text{geometric mean of } P(w_2|w_1) \text{ and } P(w_1|w_2)$
 - PPMI (popular for DSMs)

- ▶ **DSMs** (second-order): symmetric span of 2 vs. 10 words, other parameters set according to Lapesa & Evert (2014).
 - ▶ we experiment with Caron P (Bullinaria & Levy 2012)
 - ightharpoonup P = 0 equalizes contributions of SVD dimensions
- ► Collocations (first-order): symmetric span, 2 vs. 10 words, with four different association measures (Evert 2008)
 - conditional probability $P(w_2|w_1)$
 - ▶ log-likelihood log G^2 (popular for collocations)
 - ▶ $MI^2 = log_2 \frac{O^2}{E} = geometric mean of <math>P(w_2|w_1)$ and $P(w_1|w_2)$
 - ► PPMI (popular for DSMs)
- Corpus data: for DSMs and collocations
 - ▶ British National Corpus: 100M words
 - ▶ ENCOW 2014 Web corpus, unique sentences: 8.5G words

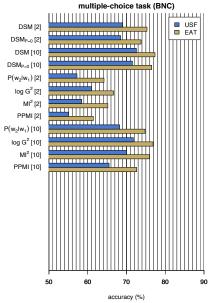
- ▶ **DSMs** (second-order): symmetric span of 2 vs. 10 words, other parameters set according to Lapesa & Evert (2014).
 - ▶ we experiment with Caron P (Bullinaria & Levy 2012)
 - ightharpoonup P = 0 equalizes contributions of SVD dimensions
- ► Collocations (first-order): symmetric span, 2 vs. 10 words, with four different association measures (Evert 2008)
 - ightharpoonup conditional probability $P(w_2|w_1)$
 - ▶ log-likelihood log G^2 (popular for collocations)
 - ▶ $MI^2 = log_2 \frac{O^2}{E} = geometric mean of <math>P(w_2|w_1)$ and $P(w_1|w_2)$
 - ► PPMI (popular for DSMs)
- Corpus data: for DSMs and collocations
 - ▶ British National Corpus: 100M words
 - ▶ ENCOW 2014 Web corpus, unique sentences: 8.5G words
- ▶ Neural embeddings: pre-trained models
 - word2vec (Mikolov et al. 2013): 100G tokens of Google News
 - ▶ GloVe (Pennington et al. 2014): 6G tokens Wikipeda + Gigaword
 - GloVe: 42G tokens Web data (Common Crawl)
 - ► FastText (Joulin et al. 2017): 600G tokens Common Crawl



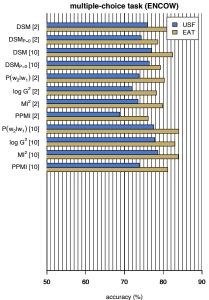
- British National Corpus (100M words)
- ► EAT subset



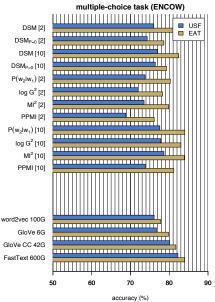
- British National Corpus (100M words)
- ► EAT subset



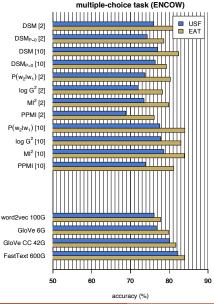
- British National Corpus (100M words)
- ► EAT vs. USF



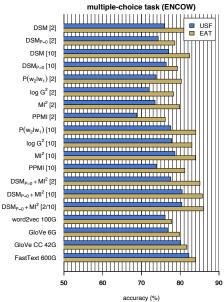
- ► ENCOW 2014 Web (8.5G words)
- ► EAT vs. USF



- ► ENCOW 2014 Web (8.5G words)
- ► EAT vs. USF
- Embeddings trained on much larger corpora



- ► ENCOW 2014 Web (8.5G words)
- ► EAT vs. USF
- Embeddings trained on much larger corpora
- ► Combined 1st-/2nd-order
 - \triangleright DSM_{P=0} + MI²
 - using neighbour rank
 - harmonic mean



- ► ENCOW 2014 Web (8.5G words)
- ► EAT vs. USF
- Embeddings trained on much larger corpora
- ► Combined 1st-/2nd-order
 - \triangleright DSM_{P=0} + MI²
 - using neighbour rank
 - harmonic mean
 - competitive with state-of-the-art embeddings

		n = 2359	n = 3836
model s	span	USF	EAT
DSM	2	76.01%	81.78%
$DSM_{P=0}$	2	74.31%	78.62%
DSM	10	76.98%	82.46%
$DSM_{P=0}$	10	76.39%	79.30%
$P(w_2 w_1)$	10	77.58%	84.02%
$\log G^2$	10	77.83%	83.00%
MI^2	2	78.64%	83.92%
PPMI	10	73.80%	81.18%
Combined	2	77.58%	85.09%
Combined	10	80.50%	85.71%
Combined	mix	80.41%	85.97%
word2vec	_	76.11%	77.78%
GloVe	_	76.71%	79.80%
GloVe CC	_	80.12%	81.72%
FastText	_	82.24%	83.97%

- ► ENCOW 2014 Web (8.5G words)
- ► EAT vs. USF
- Embeddings trained on much larger corpora
- ► Combined 1st-/2nd-order
 - $DSM_{P=0} + MI^2$
 - using neighbour rank
 - harmonic mean
 - competitive with state-of-the-art embeddings

		n = 2359		n = 3836	
		USF		EAT	-
model	span	soft acc.	Irank	soft acc.	Irank
DSM	2	41.54%	6.6	34.53%	9.9
$DSM_{P=0}$	2	42.12%	7.6	34.67%	12.1
DSM	10	42.01%	6.0	35.93%	9.1
$DSM_{P=0}$	10	42.86%	7.1	35.68%	11.6

		n = 2359 USF		n = 3836 EAT	
model	span	soft acc.	Irank	soft acc.	Irank
DSM	2	41.54%	6.6	34.53%	9.9
$DSM_{P=0}$	2	42.12%	7.6	34.67%	12.1
DSM	10	42.01%	6.0	35.93%	9.1
$DSM_{P=0}$	10	42.86%	7.1	35.68%	11.6
$P(w_2 w_1)$	10	22.34%	17.0	11.27%	27.1
$\log G^2$	10	37.63%	6.6	34.13%	8.8
MI^2	10	39.73%	6.2	34.01%	8.7
PPMI	10	35.34%	8.2	29.29%	12.2

		n = 2359		n = 3836	
		USF		EAT	
model	span	soft acc.	Irank	soft acc.	Irank
DSM	2	41.54%	6.6	34.53%	9.9
$DSM_{P=0}$	2	42.12%	7.6	34.67%	12.1
DSM	10	42.01%	6.0	35.93%	9.1
$DSM_{P=0}$	10	42.86%	7.1	35.68%	11.6
$P(w_2 w_1)$	10	22.34%	17.0	11.27%	27.1
$\log G^2$	10	37.63%	6.6	34.13%	8.8
MI^2	10	39.73%	6.2	34.01%	8.7
PPMI	10	35.34%	8.2	29.29%	12.2
Combined	1 2	42.29%	5.5	37.54%	7.0
Combined	10	44.99%	4.8	39.48%	6.5
Combined	l mix	45.36%	4.8	39.48%	6.4

		n = 2359		n = 38	336
		USF		EAT	
model	span	soft acc.	Irank	soft acc.	Irank
DSM	2	41.54%	6.6	34.53%	9.9
$DSM_{P=0}$	2	42.12%	7.6	34.67%	12.1
DSM	10	42.01%	6.0	35.93%	9.1
$DSM_{P=0}$	10	42.86%	7.1	35.68%	11.6
$P(w_2 w_1)$	10	22.34%	17.0	11.27%	27.1
$\log G^2$	10	37.63%	6.6	34.13%	8.8
MI^2	10	39.73%	6.2	34.01%	8.7
PPMI	10	35.34%	8.2	29.29%	12.2
Combined	2	42.29%	5.5	37.54%	7.0
Combined	10	44.99%	4.8	39.48%	6.5
Combined	mix	45.36%	4.8	39.48%	6.4
word2vec	_	38.98%	7.7	30.51%	14.8
GloVe	_	39.22%	7.6	30.19%	13.8
GloVe CC	_	44.01%	5.7	34.26%	10.5
FastText	_	51.00%	4.1	40.34%	7.2

Outline

Distributional semantics & cognitive modelling

Evaluation tasks: cognitive plausibility

Free association norms

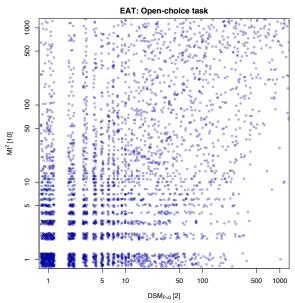
The FAST task

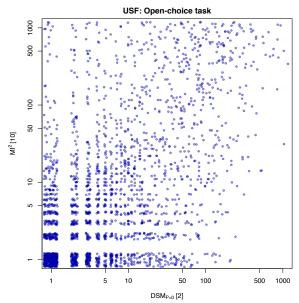
A problem with standard tasks

FAST: Data set and tasks

FAST: Experiments

Outlook & hands-on exercise





 1^{st} -order = syntagmatic vs. 2^{nd} -order = paradigmatic?

- ▶ 1st- and 2nd-order models less complementary than expected
 ➡ relatively small benefit from combination
- But intuition not completely wrong (L2/R2):
 - ▶ DSM: duckling → piglet, chick, duck, cygnet, hatchling, . . .
 - ▶ MI^2 : duckling \rightarrow ugly, chick, duck, swan, fluffy, roast, . . .

 $1^{\mathsf{st}}\text{-}\mathsf{order} = \mathsf{syntagmatic} \ \mathsf{vs.} \ 2^{\mathsf{nd}}\text{-}\mathsf{order} = \mathsf{paradigmatic}?$

- ▶ 1st- and 2nd-order models less complementary than expected
 ➡ relatively small benefit from combination
- ▶ But intuition not completely wrong (L2/R2):
 - ▶ DSM: duckling → piglet, chick, duck, cygnet, hatchling, . . .
 - ▶ MI^2 : duckling \rightarrow ugly, chick, duck, swan, fluffy, roast, . . .

Possible explanation for the overlap under (many) simplifying assumptions (sentence span, raw cooc freqs, ...)

- ► Consider a term-context matrix **F** with very small contexts
 - e.g. **tweets**, sentences, paragraphs
 - or aligned sentence pairs (Sahlgren & Karlgren 2005)
- ► No feature weighting or normalisation
- ightharpoonup **F** is binary, i.e. $f_{ii} \in \{0,1\}$

 \triangleright What is the cosine similarity of \mathbf{f}_i and \mathbf{f}_i ?

 \triangleright What is the cosine similarity of \mathbf{f}_i and \mathbf{f}_i ?

• $\mathbf{f}_i^T \mathbf{f}_i = O = \text{co-occurrence frequency}$

▶ What is the cosine similarity of \mathbf{f}_i and \mathbf{f}_j ?

- $\mathbf{f}_i^T \mathbf{f}_j = O = \text{co-occurrence frequency}$
- ▶ $\|\mathbf{f}_i\|_2 = \sqrt{R} = \text{marginal frequency of term } i$

▶ What is the cosine similarity of \mathbf{f}_i and \mathbf{f}_j ?

- $\mathbf{f}_i^T \mathbf{f}_j = O = \text{co-occurrence frequency}$
- $\|\mathbf{f}_i\|_2 = \sqrt{R} = \text{marginal frequency of term } i$
- $\|\mathbf{f}_i\|_2 = \sqrt{C} = \text{marginal frequency of term } j$

 \triangleright What is the cosine similarity of \mathbf{f}_i and \mathbf{f}_i ?

- $\mathbf{f}_i^T \mathbf{f}_i = O = \text{co-occurrence frequency}$
- $\|\mathbf{f}_i\|_2 = \sqrt{R} = \text{marginal frequency of term } i$
- $\|\mathbf{f}_i\|_2 = \sqrt{C} = \text{marginal frequency of term } i$
- Cosine similarity in $\mathbf{F} = \mathbf{first}$ -order association

$$\cos \alpha = \frac{\mathbf{f}_i^T \mathbf{f}_j}{\|\mathbf{f}_i\|_2 \cdot \|\mathbf{f}_j\|_2} = \frac{O}{\sqrt{RC}} \sim \sqrt{\mathsf{MI}^2}$$

- Construct a term-term DSM with textual context = tweet
- ► Recall: co-occurrence frequency $m_{ij} = \mathbf{f}_i^T \mathbf{f}_j$

34 / 40

- Construct a term-term DSM with textual context = tweet
- ► Recall: co-occurrence frequency $m_{ij} = \mathbf{f}_i^T \mathbf{f}_j$
- Symmetric co-occurrence matrix M can be derived from F:

$$M = FF^T$$

- Construct a term-term DSM with textual context = tweet
- ► Recall: co-occurrence frequency $m_{ij} = \mathbf{f}_i^T \mathbf{f}_j$
- ► Symmetric co-occurrence matrix **M** can be derived from **F**:

$$M = FF^T$$

Compare SVD of the two matrices

$$\mathbf{F} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \qquad \mathbf{M} = \mathbf{F} \mathbf{F}^T = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T$$
$$= \mathbf{U} \mathbf{\Sigma}^2 \mathbf{U}^T$$

- Construct a term-term DSM with textual context = tweet
- ► Recall: co-occurrence frequency $m_{ij} = \mathbf{f}_i^T \mathbf{f}_j$
- ► Symmetric co-occurrence matrix **M** can be derived from **F**:

$$M = FF^T$$

Compare SVD of the two matrices

$$\mathbf{F} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \qquad \mathbf{M} = \mathbf{F} \mathbf{F}^T = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T$$
$$= \mathbf{U} \mathbf{\Sigma}^2 \mathbf{U}^T$$

- → M is power-scaled version of F
 - dimensionality reduction: $P_r(\mathbf{F}) = \mathbf{U}_r \mathbf{\Sigma}_r$ vs. $P_r(\mathbf{M}) = \mathbf{U}_r \mathbf{\Sigma}_r^2$
 - **F** is equivalent to **M** with Caron $P = \frac{1}{2}$

Bonus task: Reverse free associations

The CogALex-IV shared task (Rapp & Zock 2014)

Reverse multiword free association

- \blacktriangleright wheel, driver, bus, drive, lorry \rightarrow ?
- ightharpoonup away, minded, gone, present, ill \rightarrow ?
- Data: subset of EAT (2000 stimuli training/test)

Bonus task: Reverse free associations

The CogALex-IV shared task (Rapp & Zock 2014)

Reverse multiword free association

- \blacktriangleright wheel, driver, bus, drive, lorry \rightarrow ?
- ightharpoonup away, minded, gone, present, ill \rightarrow ?
- Data: subset of EAT (2000 stimuli training/test)
- Very challenging (best: 35% accuracy)
 - open-ended vocabulary (including inflected surface forms!)
 - need for integrating predictions of different stimuli
- And the winner was . . .
 - a system using first-order statistics to re-rank the output of a "standard" DSM (Ghosh et al. 2015)
- Our submission: several 1st-order vs. 2nd-order models
 - ▶ best 1st-order: 27.7% / best 2nd-order: 14.0%

Hands-on exercise

- Solve the FAST multiple-choice task with a DSM
 - eval.multiple.choice() does most of the work for you
 - use details=TRUE to inspect biggest mistakes and explore performance (e.g. wrt. frequency of stimulus and response)
- Can you also make use of first-order (collocation) data?
 - ▶ hint: the DSM matrix **M** contains co-occurrence counts
- Advanced: Can you combine DSMs with first-order data?
 - hint: use average of DSM and first-order "neighbour" rank
- Advanced: Try to solve the open-choice lexical access task
 - ▶ no ready-made evaluation function in wordspace yet
- R code in hands_on_day5.R will help you get started!

36 / 40

References I

- Bullinaria, John A. and Levy, Joseph P. (2012). Extracting semantic representations from word co-occurrence statistics: Stop-lists, stemming and SVD. Behavior Research Methods, 44(3), 890–907.
- Clark, H.H. (1970). Word associations and linguistic theory. In J. Lyons (ed.), New horizons in linguistics. Harmondsworth: Penguin.
- Curran, James; Clark, Stephen; Bos, Johan (2007). Linguistically motivated large-scale NLP with C&C and Boxer. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, Posters and Demonstrations Sessions, pages 33–36, Prague, Czech Republic.
- Evert, Stefan (2008). Corpora and collocations. In A. Lüdeling and M. Kytö (eds.), Corpus Linguistics. An International Handbook, chapter 58, pages 1212–1248. Mouton de Gruyter, Berlin, New York.
- Ghosh, Urmi; Jain, Sambhav; Paul, Soma (2015). A two-stage approach for computing associative responses to a set of stimulus words. In Z. (eds.) (ed.), Proceedings of the 4th Workshop on Cognitive Aspects of the Lexicon,.
- Hare, Mary; Jones, Michael; Thomson, Caroline; Kelly, Sarah; McRae, Ken (2009). Activating event knowledge. Cognition, 111(2), 151–167.

References II

- Herdağdelen, Amaç; Erk, Katrin; Baroni, Marco (2009). Measuring semantic relatedness with vector space models and random walks. In *Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language Processing (TextGraphs-4)*, pages 50–53, Suntec, Singapore.
- James, W (1890). The principles of psychology. New York: Dover.
- Joulin, Armand; Grave, Edouard; Bojanowski, Piotr; Mikolov, Tomas (2017). Bag of tricks for efficient text classification. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 427–431, Valencia, Spain.
- Kiss, G.R; Armstrong, C.; Milroy; Piper, J. (1973). An associative thesaurus of english and its computer analysis. In R. B. Aitken and N. Hamilton-Smith (eds.), *The computer and literary studies*. Edinburgh University Pres.
- Lapesa, Gabriella and Evert, Stefan (2013). Evaluating neighbor rank and distance measures as predictors of semantic priming. In *Proceedings of the ACL Workshop* on Cognitive Modeling and Computational Linguistics (CMCL 2013), pages 66–74, Sofia, Bulgaria.
- Lapesa, Gabriella and Evert, Stefan (2014). A large scale evaluation of distributional semantic models: Parameters, interactions and model selection. *Transactions of the Association for Computational Linguistics*, **2**, 531–545.

References III

- Lapesa, Gabriella; Evert, Stefan; Schulte im Walde, Sabine (2014). Contrasting syntagmatic and paradigmatic relations: Insights from distributional semantic models. In Proceedings of the Third Joint Conference on Lexical and Computational Semantics (*SEM 2014), pages 160–170, Dublin, Ireland.
- Mikolov, Tomas; Chen, Kai; Corrado, Greg; Dean, Jeffrey (2013). Efficient estimation of word representations in vector space. In Workshop Proceedings of the International Conference on Learning Representations 2013.
- Mitchell, Tom M.; Shinkareva, Svetlana V.; Carlson, Andrew; Chang, Kai-Min; Malave, Vicente L.; Mason, Robert A.; Just, Marcel Adam (2008). Predicting human brain activity associated with the meanings of nouns. *Science*, **320**, 1191–1195.
- Murphy, Brian; Baroni, Marco; Poesio, Massimo (2009). EEG responds to conceptual stimuli and corpus semantics. In *Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing*, pages 619–627, Singapore.
- Nelson, Douglas L.; McEvoy, Cathy L.; Schreiber, Thomas A. (2004). The university of south florida free association, rhyme, and word fragment norms. *Behavior Research Methods, Instruments, & Computers*.
- Padó, Sebastian and Lapata, Mirella (2007). Dependency-based construction of semantic space models. *Computational Linguistics*, **33**(2), 161–199.

References IV

- Pennington, Jeffrey; Socher, Richard; Manning, Christopher D. (2014). GloVe: Global vectors for word representation. In *Proceedings of EMNLP 2014*.
- Rapp, Reinhard and Zock, Michael (2014). The cogalex-iv shared task on the lexical access problem. In *Proceedings of the 4th Workshop on Cognitive Aspects of the Lexicon*,, pages 1–14. Zock/Rapp/Huang (eds.).
- Sahlgren, Magnus and Karlgren, Jussi (2005). Automatic bilingual lexicon acquisition using random indexing of parallel corpora. *Natural Language Engineering*, 11, 327–341.
- Santus, Enrico; Gladkova, Anna; Evert, Stefan; Lenci, Alessandro (2016). The CogALex-V shared task on the corpus-based identification of semantic relations. In Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex-V), pages 69–79, Osaka, Japan.
- Schäfer, Roland and Bildhauer, Felix (2012). Building large corpora from the web using a new efficient tool chain. In *Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC '12)*, pages 486–493, Istanbul, Turkey. ELRA.
- Wettler, Manfred; Rapp, Reinhard; Sedlmeier, Peter (2005). Free word associations correspond to contiguities between words in texts*. *Journal of Quantitative Linguistics*, **12**(2–3), 111–122.

