Distributional semantics & cognitive modelling Evaluation tasks: cognitive plausibility

A problem with standard tasks

Hands-on Distributional Semantics

Part 5: DS beyond NLP – Free association norms

Stefan Evert¹ & Gabriella Lapesa² with Alessandro Lenci³ and Marco Baroni⁴

¹Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
 ²University of Stuttgart, Germany
 ³University of Pisa, Italy
 ⁴University of Trento, Italy

http://wordspace.collocations.de/doku.php/course:esslli2021:start

Copyright © 2009–2021 Evert, Lapesa, Lenci & Baroni | Licensed under CC-by-sa version 3.0

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

DSM Tutorial – Part 5 words

wordspace.collocations.de 1 / 40

Distributional semantics & cognitive modelling Evaluation tasks: cognitive plausibility

Cognitive modelling with DSM

- Why? Because we want to know whether DS captures the mental lexical knowledge of human speakers!
- Task: DSM predicts reaction times in priming experiments (Hare *et al.* 2009; Lapesa & Evert 2013)
 - often just experimental items used for multiple-choice task (e.g. Padó & Lapata 2007; Herdağdelen *et al.* 2009)
 - cf. tasks constructed from Lazaridou2013 yesterday
 - data sets of experimental items: GEK_Items, SPP_Items
- Task: DSM predicts EEG potentials (Murphy et al. 2009) or fMRI brain activation levels (Mitchell et al. 2008)
 - huge datasets, but tiny and selective vocabulary
- Task: DSM predicts human free associations
 - often considered a "window into the mental lexicon"
 - free association norms available for thousands of cue words

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

wordspace.collocations.de

2 / 40

Distributional semantics & cognitive modelling Free association norms

Outline

Outline

Distributional semantics & cognitive modelling

Evaluation tasks: cognitive plausibility Free association norms

The FAST task

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

A problem with standard tasks FAST: Data set and tasks FAST: Experiments Outlook & hands-on exercise

Free associations

... a cue into the organization of the mental lexicon?

Which words come to your mind if you hear

- whisky \rightarrow gin, drink, scotch, bottle, soda
- \blacktriangleright giraffe \rightarrow neck, animal, zoo, long, tall
- Hypotheses concerning the nature of the underlying process:
 - Result of learning-by-contiguity (James 1890)

ISS syntagmatic (1st-order)

wordspace.collocations.de

5/40

- Large collections available
 - Edinburgh Associative Thesaurus (EAT) 8210 stimuli, 100 subjects (Kiss *et al.* 1973)
 - University of South Florida Free Association Norms (USF) 5019 stimuli, 6000 subjects (Nelson *et al.* 2004)

DSM Tutorial - Part 5

Syntagmatic vs. paradigmatic relations

Definitions and general assumptions

- ► Syntagmatic ⇐⇒ contiguity
 - Examples: {dog, barks}, {dog, bone}
 - ▶ Words appear together: 1st-order co-occurrence
 - ► Found in: collocational profiles, DSM dimensions

► Paradigmatic ↔ interchangeability

- Examples: {book, volume}, {dog, animal}
- ▶ Words appear in similar contexts: 2nd-order co-occurrence
- Usually semantically related
- Found in: DSM nearest neighbours

However . . .

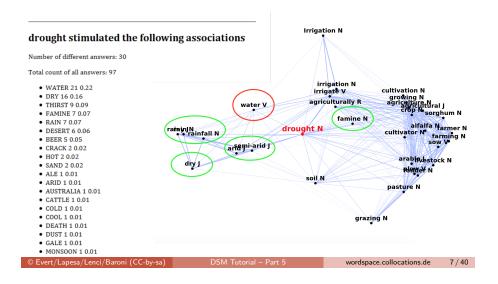
© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

DSM neighbourhoods include syntagmatically related words (collocates) if certain parameters are properly set, in particular if the context window is large enough (Lapesa *et al.* 2014).

Distributional semantics & cognitive modelling Free association norms

Free associations in a DSM Drought in EAT vs. DSM

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)



Distributional semantics & cognitive modelling Free association norms

Free associations & co-occurrence data Previous work

- ▶ Wettler *et al.* (2005)
 - Data: subset of EAT (100 stimuli)
 - ► Task: prediction of the most common free associate
 - Model: first-order model, BNC, large window (20 words)
 - Result: human associative responses can be predicted from contiguities between words in language use (collocations)
- ESSLLI 2008 Shared Task

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

- Data: subset of EAT (a different set of 100 stimuli)
- ► Task 1: discrimination btw. the most common associate and hapax/random distractors → multiple choice
- Task 2: prediction of the most common free associate
- Result: first-order models (collocations) are better than second-order models (DSMs)

DSM Tutorial - Part 5

wordspace.collocations.de

6 / 40

The FAST task A problem with standard tasks	The FAST task A problem with standard tasks					
Outline	Problems of standard tasks & data sets					
Distributional semantics & cognitive modelling Evaluation tasks: cognitive plausibility	Problems with semantic interpretation of DSMs don't only stem from evaluation methodology data sets can be problematic as well!					
Free association norms	Two major problems:					
	DSMs may exploit contingent properties of the task					
The FAST task A problem with standard tasks FAST: Data set and tasks FAST: Experiments Outlook & hands-on exercise	 random fillers as distractors ("controls") recognize random word pairs rather than semantic relations choice of clearly separated categories and prototypical exemplars in noun clustering task (ESSLLI 2008) much harder to identify categories in general word list typical superordinate-level words in hypernym detection task recognize "typical hypernym" in a multiple-choice setting 					
	Data set size too small					
	▶ e.g. 97.5% accuracy on 80 TOEFL items → over-fitting					
© Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 5 wordspace.collocations.de 9/	40 © Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 5 wordspace.collocations.de 10 / 40					

The FAST task A problem with standard tasks

DSM evaluation problems: a concrete example The CogALex-V Shared Task (Santus *et al.* 2016)

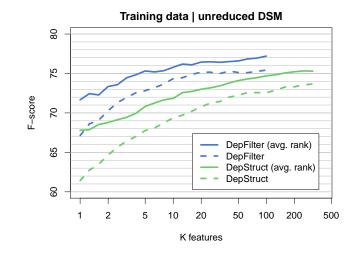
- Aim: better linguistic understanding of DS from identification of specific semantic relations
- ▶ Data: 747 target words with approx. 10 candidate relata each
 - ▶ training set: 318 targets, 3054 word pairs
 - ▶ test set: 429 targets, 4260 word pairs
- Subtask 1: related vs. unrelated word pairs
 - unrelated pairs are random fillers
 - relatively easy: $F_1 = 79.0\%$ (best system)
- Subtask 2: distinguish between semantic relations
 - ▶ SYN: w_2 can be used with same meaning as w_1
 - ANT: w_2 can be used as the opposite of w_1
 - ► HYPER: *w*₁ is a kind of *w*₂
 - ▶ PART_OF: *w*₁ is a part of *w*₂
 - RANDOM: no relation (random word + manual check)
 - relatively hard: $F_1 = 44.5\%$ (best system: deep learning)

The FAST task A problem with standard tasks

DSM evaluation problems: a concrete example Mach 5 at CogALex 2016 (Evert 2016)

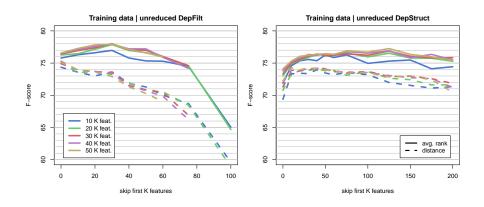
- Mach 5 participated in the CogALex-V Shared Task as a traditional "count" (non-neural) DSM
 - ▶ 10-billion-word Web corpus (Schäfer & Bildhauer 2012)
 - ▶ syntactic dependencies from C&C parser (Curran *et al.* 2007)
 - ► 26.5k target words, up to 300k feature dimensions
 - other parameters set according to Lapesa & Evert (2014)
- Parameter optimization on training data (subtask 1)
- Machine learning on optimized representations (subtask 2)
 - ▶ learns relevance weights for 600 latent SVD dimensions
 - best results from combination of different SVD spaces
- ☞ Try it yourself: http://www.collocations.de/data/#mach5

Mach 5: Parameter optimization



DSM Tutorial – Part 5

Mach 5: Parameter optimization

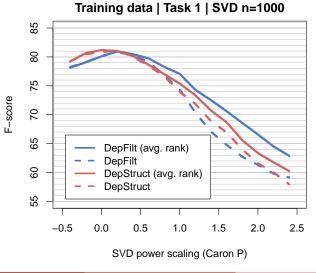


DSM Tutorial – Part 5

wordspace.collocations.de 13 / 40

The FAST task A problem with standard tasks

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)



Mach 5: Are we doing well?

 $F_1 = 77.88\%$ for related vs. unrelated (best: 79.0%)

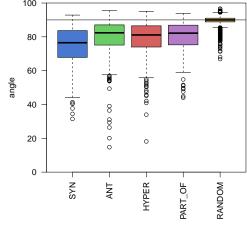
However . . .

- Parameter optimization yields surprising result: best model uses < 50k features with relatively low frequency</p>
- Nearest neighbours are unsatisfactory, e.g. for play: playing (54.1°), star (62.8°), reunite (62.9°), co-star (64.3°), reprise (64.4°), player (66.7°), score (68.5°), audition (69.2°), sing (69.4°), actor (69.5), understudy (69.6), game (70.3), ...
- Why is Mach 5 still doing so well in the task, then?

wordspace.collocations.de 13 / 40

The FAST task A problem with standard tasks

Mach 5: What is going wrong?



- \square DSM has learned to recognize random word pairs (at 90°)!
- We need better data sets with high-quality distractors!

DSM Tutorial – Part 5

© Evert/Lapesa/Lenci/Baroni (CC-by-sa) wordspace.collocations.de 15 / 40

The FAST task FAST: Data set and tasks

The Free ASsociation Task (FAST) data set Preprocessing

- 1. Starting point: EAT (8210 stimuli), USF (5019 stimuli)
- 2. Out-of-context POS tagging
 - Annotate items in EAT and USF (stimuli and responses) with part of speech information
 - ▶ How? Most frequent POS in Web corpus ENCOW: publicly available 10-billion-word Web corpus → replicability
- 3. Out-of-context lemmatization
 - morpha, a robust morphological analyzer http://users.sussex.ac.uk/~johnca/morph.html
 - Immatization of unknown words based on POS tag
- 4. Annotation with frequency information
 - frequency lists from ENCOW (lemmatised with morpha)

Outline

The FAST task

A problem with standard tasks FAST: Data set and tasks

© Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial - Part 5 wordspace.collocations.de 16 / 40

The FAST task FAST: Data set and tasks

The Free ASsociation Task (FAST) data set Item selection

For each stimulus in EAT (8210) and USF (5019) select a:

- **FIRST**: the most common associate response
- ► HAPAX: a response generated for the target once
 - or twice for USF (hapax responses are omitted there)
 - ▶ if several HAPAX candidates are available, pick the one whose lemma frequency matches most closely that of FIRST
- **RANDOM**, by randomly picking a word which was among the top 25% associates of another stimulus (and produced at least 5 times). If possible:
 - match lemma frequency of RANDOM and FIRST

DSM Tut

try to use each RANDOM only once

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

(multiwords, numbers, closed-class words, and other words that do not occur in ENCOW were discarded)

18 / 40

The FAST data set

Final data set

- EAT subset: 3836 test items + 3774 training items
- USF subset: 2359 test items + 2360 training items
- ▶ Item = (STIMULUS, FIRST, HAPAX, RANDOM)
- Each stimulus and candidate response provided as lowercased word form and POS-disambiguated lemma
 - + ENCOW frequency information
 - +~# test subjects who produced response
- Included as FAST in package wordspaceEval

The FAST dataset

The new EAT task isn't perfect either ... yet

- Guessing POS from corpus doesn't always work
 - e.g. $\mathit{fit}_{\mathsf{VERB}} \rightarrow \mathit{epileptic}_{\mathsf{ADJ}}$, $\mathit{aristocracy}_{\mathsf{NOUN}} \rightarrow \mathit{lords}_{\mathsf{NAME}}$
 - but very few lemmatization errors (e.g. $daiquiri \rightarrow daiquirus$)
- Colloquialisms and British slang
 - e.g. $bod_{NOUN} \rightarrow person_{NOUN}$ (rare in written corpus)
 - but Web corpus has Welsh bod 'to be' mistagged as noun

DSM Tutorial – Part 5

- DSM neighbours: yn, hynny, mewn, hwn, gyfer, ..., 49. bloke, techy_{NOUN}, nus, hon, ..., 60. guy, mai, geezer, ...
- ▶ another example is $mellow_{ADJ} \rightarrow yellow_{ADJ}$

© Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 5 wordspace.collocations.de	19/40 © Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 5 wordspace.collocations.de 20/40					
The FAST task FAST: Data set and tasks	The FAST task FAST: Data set and tasks					
The FAST tasks	The FAST tasks					
Task 1: multiple-choice	Task 2: open-vocabulary lexical access					
 Given a stimulus and a <first, hapax,="" random=""> triple, determine which of the three candidates is FIRST.</first,> Stimulus: accept, < <u>receive</u>, love, soul> Performance: accuracy Baseline: 33.3% 	 Given a stimulus (e.g., accept), predict FIRST (receive) out of a candidate set (all FIRST: USF=1197, EAT=1633) Performance: two measures Soft accuracy: average over reciprocal rank (1/r) of the true FIRST associate, as a percentage.					
	answer (and hence score low on soft accuracy) Baselines 					
	 Soft accuracy: USF=0.64% and EAT=0.49% Log rank: USF=442.0 and EAT=602.4 					

The FAST task FAST: Experiments

Outline

The FAST task

FAST: Experiments

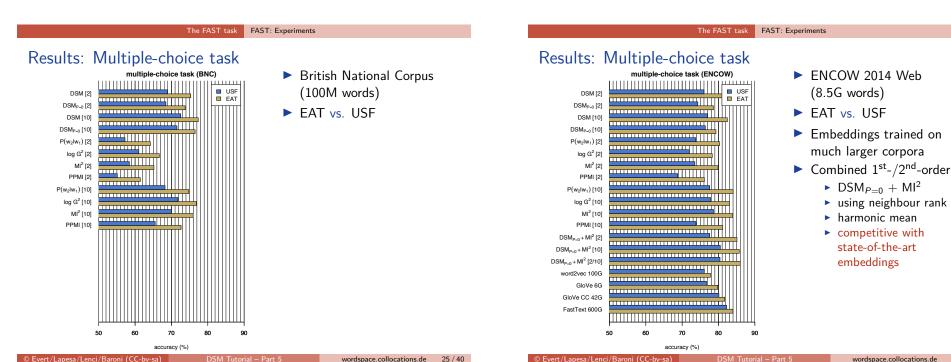
Experimental setup

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

- **DSMs (second-order)**: symmetric span of 2 vs. 10 words, other parameters set according to Lapesa & Evert (2014).
 - ▶ we experiment with Caron *P* (Bullinaria & Levy 2012)
 - P = 0 equalizes contributions of SVD dimensions
- **Collocations (first-order)**: symmetric span, 2 vs. 10 words, with four different association measures (Evert 2008)
 - conditional probability $P(w_2|w_1)$
 - log-likelihood log G^2 (popular for collocations)
 - $MI^2 = \log_2 \frac{O^2}{E}$ = geometric mean of $P(w_2|w_1)$ and $P(w_1|w_2)$
 - PPMI (popular for DSMs)
- Corpus data: for DSMs and collocations
 - British National Corpus: 100M words
 - ENCOW 2014 Web corpus, unique sentences: 8.5G words
- Neural embeddings: pre-trained models
 - word2vec (Mikolov et al. 2013): 100G tokens of Google News
 - ▶ GloVe (Pennington *et al.* 2014): 6G tokens Wikipeda + Gigaword
 - GloVe: 42G tokens Web data (Common Crawl)
 - ▶ FastText (Joulin et al. 2017): 600G tokens Common Crawl DSM Tutorial – Part 5

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

wordspace.collocations.de 23 / 40



wordspace.collocations.de 24 / 40

The FAST task FAST: Experiments

Results: Multiple-choice task

		<i>n</i> = 2359	<i>n</i> = 3836
model	span	USF	EAT
DSM	2	76.01%	81.78%
$DSM_{P=0}$	2	74.31%	78.62%
DSM	10	76.98%	82.46%
$DSM_{P=0}$	10	76.39%	79.30%
$P(w_2 w_1)$	10	77.58%	84.02%
$\log G^2$	10	77.83%	83.00%
MI^2	2	78.64%	83.92%
PPMI	10	73.80%	81.18%
Combined	2	77.58%	85.09%
Combined	10	80.50%	85.71%
Combined	mix	80.41%	85.97%
word2vec	-	76.11%	77.78%
GloVe	-	76.71%	79.80%
GloVe CC	-	80.12%	81.72%
FastText	-	82.24%	83.97%

- ENCOW 2014 Web (8.5G words)
- ► EAT vs. USF
- Embeddings trained on much larger corpora
- ► Combined 1st-/2nd-order
 - ► $DSM_{P=0} + MI^2$
 - using neighbour rank
 - harmonic mean
 - competitive with state-of-the-art embeddings

Results: Open-choice task

		n = 23	359	n = 3836			
		USF	=	EAT			
model	span	soft acc.	lrank	soft acc.	Irank		
DSM	2	41.54%	6.6	34.53%	9.9		
$DSM_{P=0}$	2	42.12%	7.6	34.67%	12.1		
DSM	10	42.01%	6.0	35.93%	9.1		
$DSM_{P=0}$	10	42.86%	7.1	35.68%	11.6		
$P(w_2 w_1)$	10	22.34%	17.0	11.27%	27.1		
$\log G^2$	10	37.63%	6.6	34.13%	8.8		
MI^2	10	39.73%	6.2	34.01%	8.7		
PPMI	10	35.34%	8.2	29.29%	12.2		
Combined	2	42.29%	5.5	37.54%	7.0		
Combined	10	44.99%	4.8	39.48%	6.5		
Combined	mix	45.36%	4.8	39.48%	6.4		
word2vec	-	38.98%	7.7	30.51%	14.8		
GloVe	-	39.22%	7.6	30.19%	13.8		
GloVe CC	-	44.01%	5.7	34.26%	10.5		
FastText	-	51.00%	4.1	40.34%	7.2		

DSM Tutorial - Part 5

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

wordspace.collocations.de 27 / 40

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

wordspace.collocations.de 28 / 40

The FAST task Outlook & hands-on exercise

Outline

Distributional semantics & cognitive modelling

Evaluation tasks: cognitive plausibility Free association norms

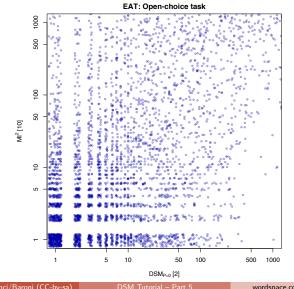
The FAST task

A problem with standard tasks FAST: Data set and tasks FAST: Experiments

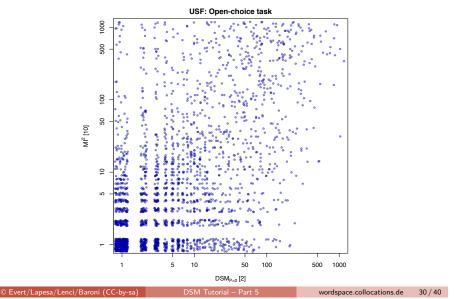
Outlook & hands-on exercise

The FAST task Outlook & hands-on exercise

Syntagmatic vs. paradigmatic



Syntagmatic vs. paradigmatic



Syntagmatic vs. paradigmatic

 1^{st} -order = syntagmatic vs. 2^{nd} -order = paradigmatic?

- \blacktriangleright 1st- and 2nd-order models less complementary than expected
 - relatively small benefit from combination
- ▶ But intuition not completely wrong (L2/R2):
 - DSM: duckling \rightarrow piglet, chick, duck, cygnet, hatchling, ...
 - ► MI²: duckling → ugly, chick, duck, swan, fluffy, roast, ...

Possible explanation for the overlap under (many) simplifying assumptions (sentence span, raw cooc freqs, \dots)

- Consider a term-context matrix F with very small contexts
 - e.g. tweets, sentences, paragraphs
 - or aligned sentence pairs (Sahlgren & Karlgren 2005)

DSM Tutorial - Part 5

- ► No feature weighting or normalisation
- ▶ **F** is binary, i.e. $f_{ij} \in \{0, 1\}$

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

The FAST task Outlook & hands-on exercise

Excursus: Similarity in term-context DSM

• What is the cosine similarity of \mathbf{f}_i and \mathbf{f}_i ?

- $\mathbf{f}_i^T \mathbf{f}_j = O = \text{co-occurrence frequency}$
- $\|\mathbf{f}_i\|_2 = \sqrt{R} = \text{marginal frequency of term } i$
- $\|\mathbf{f}_j\|_2 = \sqrt{C}$ = marginal frequency of term j
- Cosine similarity in F = first-order association

$$\cos \alpha = \frac{\mathbf{f}_i^T \mathbf{f}_j}{\|\mathbf{f}_i\|_2 \cdot \|\mathbf{f}_j\|_2} = \frac{O}{\sqrt{RC}} \sim \sqrt{\mathsf{MI}^2}$$

The FAST task Outlook & hands-on exercise

Excursus: Distance in term-context DSM

• What is the Manhattan distance between \mathbf{f}_i and \mathbf{f}_i ?

$\mathbf{f}'_i = \begin{bmatrix} 0 \end{bmatrix}$	0	$\frac{1}{R}$	0	$\frac{1}{R}$	0	0	$\frac{1}{R}$	0	$\frac{1}{R}$	0	0]
$\mathbf{f}_j' = \left[\frac{1}{C}\right]$	0	$\frac{1}{C}$	$\frac{1}{C}$	0	0	$\frac{1}{C}$	$\frac{1}{C}$	0	$\frac{1}{C}$	$\frac{1}{C}$	$\frac{1}{C}$

- $\|\mathbf{f}_i\|_1 = R$ = marginal frequency of term *i*
- $\|\mathbf{f}_j\|_1 = C$ = marginal frequency of term j
- normalised: $\mathbf{f}'_i = \mathbf{f}_i / R$ and $\mathbf{f}'_j = \mathbf{f}_j / C$
- ► Manhattan distance in **F** = **first-order** association

wordspace.collocations.de

31 / 40

Excursus: Term-context vs. term-term DSM

- Construct a term-term DSM with textual context = tweet
- ▶ Recall: co-occurrence frequency $m_{ij} = \mathbf{f}_i^T \mathbf{f}_j$
- Symmetric co-occurrence matrix **M** can be derived from **F**:

 $\mathbf{M} = \mathbf{F}\mathbf{F}^{\mathcal{T}}$

Compare SVD of the two matrices

 $\mathbf{F} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \qquad \mathbf{M} = \mathbf{F} \mathbf{F}^T = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \\ = \mathbf{U} \mathbf{\Sigma}^2 \mathbf{U}^T$

- ➡ M is power-scaled version of F
 - dimensionality reduction: $P_r(\mathbf{F}) = \mathbf{U}_r \mathbf{\Sigma}_r$ vs. $P_r(\mathbf{M}) = \mathbf{U}_r \mathbf{\Sigma}_r^2$
 - **F** is equivalent to **M** with Caron $P = \frac{1}{2}$

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

DSM Tutorial – Part 5 wordspace.collocations.de

34 / 40

Bonus task: Reverse free associations

The CogALex-IV shared task (Rapp & Zock 2014)

Reverse multiword free association

- \blacktriangleright wheel, driver, bus, drive, lorry \rightarrow ?
- \blacktriangleright away, minded, gone, present, ill \rightarrow ?
- Data: subset of EAT (2000 stimuli training/test)
- ► Very challenging (best: 35% accuracy)
 - open-ended vocabulary (including inflected surface forms!)
 - need for integrating predictions of different stimuli
- And the winner was . . .
 - a system using first-order statistics to re-rank the output of a "standard" DSM (Ghosh *et al.* 2015)
- ▶ Our submission: several 1st-order vs. 2nd-order models

DSM Tutorial - Part 5

▶ best 1st-order: 27.7% / best 2nd-order: 14.0%

The FAST task Outlook & hands-on exercise

Hands-on exercise

- Solve the FAST multiple-choice task with a DSM
 - eval.multiple.choice() does most of the work for you
 - use details=TRUE to inspect biggest mistakes and explore performance (e.g. wrt. frequency of stimulus and response)
- Can you also make use of first-order (collocation) data?
 - ▶ hint: the DSM matrix **M** contains co-occurrence counts
- Advanced: Can you combine DSMs with first-order data?
 - hint: use average of DSM and first-order "neighbour" rank
- Advanced: Try to solve the open-choice lexical access task
 no ready-made evaluation function in wordspace yet
- R code in hands_on_day5.R will help you get started!

© Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 5

36 / 40

wordspace.collocations.de

35 / 40

The FAST task Outlook & hands-on exercise

References I

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

- Bullinaria, John A. and Levy, Joseph P. (2012). Extracting semantic representations from word co-occurrence statistics: Stop-lists, stemming and SVD. *Behavior Research Methods*, 44(3), 890–907.
- Clark, H.H. (1970). Word associations and linguistic theory. In J. Lyons (ed.), *New horizons in linguistics*. Harmondsworth: Penguin.
- Curran, James; Clark, Stephen; Bos, Johan (2007). Linguistically motivated large-scale NLP with C&C and Boxer. In *Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, Posters and Demonstrations Sessions*, pages 33–36, Prague, Czech Republic.
- Evert, Stefan (2008). Corpora and collocations. In A. Lüdeling and M. Kytö (eds.), *Corpus Linguistics. An International Handbook*, chapter 58, pages 1212–1248. Mouton de Gruyter, Berlin, New York.
- Ghosh, Urmi; Jain, Sambhav; Paul, Soma (2015). A two-stage approach for computing associative responses to a set of stimulus words. In Z. (eds.) (ed.), *Proceedings of the 4th Workshop on Cognitive Aspects of the Lexicon*,.
- Hare, Mary; Jones, Michael; Thomson, Caroline; Kelly, Sarah; McRae, Ken (2009). Activating event knowledge. Cognition, 111(2), 151–167.

References II

- Herdağdelen, Amaç; Erk, Katrin; Baroni, Marco (2009). Measuring semantic relatedness with vector space models and random walks. In *Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language Processing (TextGraphs-4)*, pages 50–53, Suntec, Singapore.
- James, W (1890). The principles of psychology. New York: Dover.
- Joulin, Armand; Grave, Edouard; Bojanowski, Piotr; Mikolov, Tomas (2017). Bag of tricks for efficient text classification. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 427–431, Valencia, Spain.
- Kiss, G.R; Armstrong, C.; Milroy; Piper, J. (1973). An associative thesaurus of english and its computer analysis. In R. B. Aitken and N. Hamilton-Smith (eds.), *The computer and literary studies*. Edinburgh University Pres.
- Lapesa, Gabriella and Evert, Stefan (2013). Evaluating neighbor rank and distance measures as predictors of semantic priming. In *Proceedings of the ACL Workshop* on Cognitive Modeling and Computational Linguistics (CMCL 2013), pages 66–74, Sofia, Bulgaria.
- Lapesa, Gabriella and Evert, Stefan (2014). A large scale evaluation of distributional semantic models: Parameters, interactions and model selection. *Transactions of the Association for Computational Linguistics*, **2**, 531–545.

DSM Tutorial - Part 5

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

wordspace.collocations.de 38 / 40

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

DSM Tutorial – Part 5

wordspace.collocations.de 39 / 40

The FAST task Outlook & hands-on exercise

References IV

- Pennington, Jeffrey; Socher, Richard; Manning, Christopher D. (2014). GloVe: Global vectors for word representation. In *Proceedings of EMNLP 2014*.
- Rapp, Reinhard and Zock, Michael (2014). The cogalex-iv shared task on the lexical access problem. In *Proceedings of the 4th Workshop on Cognitive Aspects of the Lexicon*,, pages 1–14. Zock/Rapp/Huang (eds.).
- Sahlgren, Magnus and Karlgren, Jussi (2005). Automatic bilingual lexicon acquisition using random indexing of parallel corpora. *Natural Language Engineering*, **11**, 327–341.
- Santus, Enrico; Gladkova, Anna; Evert, Stefan; Lenci, Alessandro (2016). The CogALex-V shared task on the corpus-based identification of semantic relations. In Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex-V), pages 69–79, Osaka, Japan.
- Schäfer, Roland and Bildhauer, Felix (2012). Building large corpora from the web using a new efficient tool chain. In *Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC '12)*, pages 486–493, Istanbul, Turkey. ELRA.
- Wettler, Manfred; Rapp, Reinhard; Sedlmeier, Peter (2005). Free word associations correspond to contiguities between words in texts*. *Journal of Quantitative Linguistics*, **12**(2–3), 111–122.

References III

- Lapesa, Gabriella; Evert, Stefan; Schulte im Walde, Sabine (2014). Contrasting syntagmatic and paradigmatic relations: Insights from distributional semantic models. In Proceedings of the Third Joint Conference on Lexical and Computational Semantics (*SEM 2014), pages 160–170, Dublin, Ireland.
- Mikolov, Tomas; Chen, Kai; Corrado, Greg; Dean, Jeffrey (2013). Efficient estimation of word representations in vector space. In Workshop Proceedings of the International Conference on Learning Representations 2013.
- Mitchell, Tom M.; Shinkareva, Svetlana V.; Carlson, Andrew; Chang, Kai-Min; Malave, Vicente L.; Mason, Robert A.; Just, Marcel Adam (2008). Predicting human brain activity associated with the meanings of nouns. *Science*, **320**, 1191–1195.
- Murphy, Brian; Baroni, Marco; Poesio, Massimo (2009). EEG responds to conceptual stimuli and corpus semantics. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 619–627, Singapore.
- Nelson, Douglas L.; McEvoy, Cathy L.; Schreiber, Thomas A. (2004). The university of south florida free association, rhyme, and word fragment norms. *Behavior Research Methods, Instruments, & Computers.*
- Padó, Sebastian and Lapata, Mirella (2007). Dependency-based construction of semantic space models. *Computational Linguistics*, 33(2), 161–199.