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The problem

“The distributional hypothesis, as motivated by the works of Zellig
Harris, is a strong methodological claim with a weak semantic
foundation. It states that differences of meaning correlate with
differences of distribution,but it neither specifies what kind of
distributional information we should look for, nor what kind of
meaning differences it mediates.” (Sahlgren 2008)

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial — Part 3 wordspace.collocations.de 2/80



N
The solution

Which kind of meaning nuance is my DSM capturing (if any)?
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The solution
Which kind of meaning nuance is my DSM capturing (if any)?

1. Parameter manipulation
» ... what kind of information should we look for?
» ... after yesterday's lecture, we are all experts and we know
how many different options we have!
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The solution
Which kind of meaning nuance is my DSM capturing (if any)?

1. Parameter manipulation

» ... what kind of information should we look for?
» ... after yesterday's lecture, we are all experts and we know
how many different options we have!

2. Evaluation: { tasks + datasets }

» ... what kind of meaning differences are we capturing?
» ... in a way, while we extract/visualize neighbors (task) our
intuition about "what a good neighbor is" is the dataset

3. Interpretation of the evaluation results
» crucial issue, often disregarded or oversimplified
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Tasks & Datasets
Outline

DSM evaluation: coordinates
Tasks & Datasets
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Tasks & Datasets
Tasks & Datasets

» Tasks are experimental setups to test DSM representations:

» Classification (multiple choice): given a target word, pick
the "best" from a set of candidates (whatever best means)

» Correlation: do DSM similarities approximate values which
quantify semantic simliarity/relatedness (ratings, reaction
times)?

» Categorization: do DSM similarities group words in a
"reasonable" way?
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the "best" from a set of candidates (whatever best means)

» Correlation: do DSM similarities approximate values which
quantify semantic simliarity/relatedness (ratings, reaction
times)?

» Categorization: do DSM similarities group words in a
"reasonable" way?

> Datasets are the external "ground truth" and contribute the
semantic "nuance" to the evaluation
» Collected ad-hoc for DSM evaluation or (often) existing
independently of it
* e.g., TOEFL, similarity ratings, experimental items from
psycholinguistic experiments)
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Tasks & Datasets
Tasks & Datasets

» Tasks are experimental setups to test DSM representations:

» Classification (multiple choice): given a target word, pick
the "best" from a set of candidates (whatever best means)

» Correlation: do DSM similarities approximate values which
quantify semantic simliarity/relatedness (ratings, reaction
times)?

» Categorization: do DSM similarities group words in a
"reasonable" way?

> Datasets are the external "ground truth" and contribute the
semantic "nuance" to the evaluation
» Collected ad-hoc for DSM evaluation or (often) existing
independently of it
* e.g., TOEFL, similarity ratings, experimental items from
psycholinguistic experiments)

{Task + Dataset} as operationalization of a hypothesis, e.g..

DSM similarity as synonymy — multiple choice task + TOEFL
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D]\ REVEITE I BRI NEYESI  Tasks & Datasets
Tasks

Instrinsic vs. Extrinsic tasks

» Intrinsic evaluation the semantic representations produced
by the DSM are evaluated directly

» The DSM is the only responsible for the performance

» Extrinsic evaluation: the DSM representations are input to
further tasks, whose performance is then evaluated, e.g.,

» DSM vectors as input of a machine learning classifier —
accuracy of the classifier

» DSM vectors to improve a machine translation system —
BLEU score of the MT
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D]\ REVEITE I BRI NEYESI  Tasks & Datasets

Datasets
Reminder: the many facets of DSM similarity

» Attributional similarity — two words sharing a large number of
salient features (attributes)
» synonymy (car/automobile)
» hyperonymy (car/vehicle)
» co-hyponymy (car/van/truck)
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D]\ REVEITE I BRI NEYESI  Tasks & Datasets

Datasets
Reminder: the many facets of DSM similarity

» Attributional similarity — two words sharing a large number of
salient features (attributes)
» synonymy (car/automobile)
» hyperonymy (car/vehicle)
» co-hyponymy (car/van/truck)
» Semantic relatedness (Budanitsky & Hirst 2006) — two words
semantically associated without necessarily being similar
function (car/drive)
meronymy (car/tyre)
location (car/road)
attribute (car/fast)

v
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D]\ REVEITE I BRI NEYESI  Tasks & Datasets

Datasets
Reminder: the many facets of DSM similarity

» Attributional similarity — two words sharing a large number of
salient features (attributes)
» synonymy (car/automobile)
» hyperonymy (car/vehicle)
» co-hyponymy (car/van/truck)
» Semantic relatedness (Budanitsky & Hirst 2006) — two words
semantically associated without necessarily being similar
» function (car/drive)
» meronymy (car/tyre)
» location (car/road)
» attribute (car/fast)

» Relational similarity (Turney 2006) — similar relation between
pairs of words (analogy)

» policeman: gun :: teacher: book
> mason: stone :: carpenter: wood
> traffic: street :: water: riverbed
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D]\ REVEITE I BRI NEYESI  Tasks & Datasets

Datasets for intrinsic evaluation of attributional
similarity/relatedness

» Synonym identification
» TOEFL test (Landauer & Dumais 1997)
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D]\ REVEITE I BRI NEYESI  Tasks & Datasets

Datasets for intrinsic evaluation of attributional
similarity/relatedness

» Synonym identification
» TOEFL test (Landauer & Dumais 1997)
> Modeling semantic similarity judgments
» RG norms (Rubenstein & Goodenough 1965)

» WordSim-353 (Finkelstein et al. 2002)
» MEN (Bruni et al. 2014), SimLex-999 (Hill et al. 2015)
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D]\ REVEITE I BRI NEYESI  Tasks & Datasets

Datasets for intrinsic evaluation of attributional
similarity/relatedness

» Synonym identification
» TOEFL test (Landauer & Dumais 1997)
> Modeling semantic similarity judgments
» RG norms (Rubenstein & Goodenough 1965)
» WordSim-353 (Finkelstein et al. 2002)
» MEN (Bruni et al. 2014), SimLex-999 (Hill et al. 2015)
» Noun categorization
» ESSLLI 2008 dataset
» Almuhareb & Poesio (AP, Almuhareb 2006)
» Semantic priming
» Hodgson dataset (Pad6 & Lapata 2007)
» Semantic Priming Project (Hutchison et al. 2013)
» Analogies & semantic relations (intrinsic & extrinsic, ML)
» Google (Mikolov et al. 2013b), BATS (Gladkova et al. 2016)
» BLESS (Baroni & Lenci 2011), CogALex (Santus et al. 2016)
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Give it a try ...

» The wordspace package contains pre-compiled DSM vectors
» based on a large Web corpus (9 billion words)

L4 /R4 surface span, log-transformed G2, SVD dim. red.

targets = lemma + POS code (e.g. white_J)

compatible with evaluation tasks included in package

v vYyy

library(wordspace)

M <- DSM_Vectors
nearest.neighbours (M, "walk_V")

amble_V stroll_V traipse_V potter_V tramp_V
19.4 21.8 21.8 22.6 22.9
saunter_V wander_V trudge_V leisurely_R saunter_N
28,5 23.7 23.8 26.2 26.4

# you can also try white, apple and kindness

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial — Part 3 wordspace.collocations.de 9/80



DSM evaluation in theory and with wordspaceEval Multiple choice
Outline

DSM evaluation in theory and with wordspaceEval
Multiple choice
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il
The TOEFL synonym task

» The TOEFL dataset (80 items)

» Target: show
Candidates: demonstrate, publish, repeat, postpone

> library(wordspaceEval)
> head (TOEFL80)
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il
The TOEFL synonym task

» The TOEFL dataset (80 items)

» Target: show

Candidates: demonstrate, publish, repeat, postpone
» Target costly

Candidates: beautiful, complicated, expensive, popular

» DSMs and TOEFL

1. take vectors of the target (t) and of the candidates (c; .. .c,)
2. measure the distance between t and c¢;, with 1 </ <n
3. select ¢; with the shortest distance in space from t

> library(wordspaceEval)
> head (TOEFL80)
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DSM evaluation in theory and with wordspaceEval Multiple choice

Humans vs. machines on the TOEFL task
> Average foreign test taker: 64.5%

And you?

> eval.multiple.choice(TOEFL80, M)
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Multiple choice
Humans vs. machines on the TOEFL task

> Average foreign test taker: 64.5%
» Macquarie University staff (Rapp 2004):

» Average of 5 non-natives: 86.75%
» Average of 5 natives: 97.75%

And you?
> eval.multiple.choice(TOEFL80, M)
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Multiple choice
Humans vs. machines on the TOEFL task

> Average foreign test taker: 64.5%
» Macquarie University staff (Rapp 2004):

» Average of 5 non-natives: 86.75%
» Average of 5 natives: 97.75%

» Distributional semantics

» Classic LSA (Landauer & Dumais 1997): 64.4%

Padé and Lapata's (2007) dependency-based model: 73.0%
Distributional memory (Baroni & Lenci 2010): 76.9%
Rapp’s (2004) SVD-based model, lemmatized BNC: 92.5%
Bullinaria & Levy (2012) carry out aggressive parameter
optimization: 100.0%

vV vy vVvYyYy

And you?
> eval.multiple.choice(TOEFL80, M)
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DSM evaluation in theory and with wordspaceEval Prediction of similarity ratings
Outline

DSM evaluation in theory and with wordspaceEval

Prediction of similarity ratings
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DSM evaluation in theory and with wordspaceEval Prediction of similarity ratings

Semantic similarity judgments

RG65 WordSim353

65 pairs, rated from 0 to 4 353 pairs, rated from 1 to 10
gem — jewel: 3.94 announcement — news: 7.56
grin — smile: 3.46 weapon — secret: 6.06

fruit — furnace: 0.05 travel — activity: 5.00

» DSMs vs. Ratings: operationalization
1. for each test pair (wy, w), take vectors wy and wy
2. measure the distance (e.g. cosine) between w; and w;
3. measure correlation between vector distances and R&G
average judgments (Padé & Lapata 2007)

> RG65[seq(0,65,5), ]
> head(WordSim353)
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DSM evaluation in theory and with wordspaceEval Prediction of similarity ratings

Semantic similarity judgments: example

RG65: British National Corpus

100

|rho| = 0.748, p = 0:0000, |r| = 0.623 .. 0.842

rd .

90
|

angular distance

40

30

human rating
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DSM evaluation in theory and with wordspaceEval Prediction of similarity ratings

Semantic similarity judgments: results

Results on RG65 task (Pearson):
» Padé and Lapata's (2007) dependency-based model: 0.62

» Dependency-based on Web corpus (Herdagdelen et al. 2009)

» without SVD reduction: 0.69
» with SVD reduction: 0.80

» Distributional memory (Baroni & Lenci 2010): 0.82
» Salient Semantic Analysis (Hassan & Mihalcea 2011): 0.86

And you?

> eval.similarity.correlation(RG65, M, convert=FALSE)
rho p.value missing r r.lower r.upper

RG65 0.687 2.61e-10 0 0.678 0.52 0.791

> plot(eval.similarity.correlation( # cosine similarity
RG65, M, convert=FALSE, details=TRUE))
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DSM evaluation in theory and with wordspaceEval Noun categorization

DSM evaluation in theory and with wordspaceEval

Noun categorization
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DSM evaluation in theory and with wordspaceEval Noun categorization

Noun categorization

» In categorization tasks, subjects are typically asked to assign
experimental items — objects, images, words — to a given
category or group items belonging to the same category

» categorization requires an understanding of the relationship
between the items in a category

> Categorization is a basic cognitive operation presupposed by
further semantic tasks

» inference
* if X is a CAR then X is a VEHICLE
» compositionality
* Ay : FOOD Ax : ANIMATE [eat(x, y)]

» “Chicken-and-egg" problem for relationship of categorization
and similarity (cf. Goodman 1972, Medin et al. 1993)
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DSM evaluation in theory and with wordspaceEval Noun categorization

Noun categorization: datasets

ESSLLIO8 (on focus today) BATTIG set

44 nouns, 6 classes 82 nouns, 10 classes
potato =—> GREEN chicken = BIRD
hammer = TOOL bear = LAND MAMMAL
car =—> VEHICLE pot —> KITCHENWARE
peacock —> BIRD 0oak = TREE
Almuhareb & Poesio MITCHELL set

402 nouns, 21 classes 60 nouns, 12 classes
day =—> TIME ant = INSECT

kiwi —> FRUIT carrot —> VEGETABLE
kitten —> ANIMAL train —> VEHICLE
volleyball —> GAME cat = ANIMAL
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blalesonare
Noun categorization: the ESSLLI 2008 dataset

Dataset of 44 concrete nouns (ESSLLI 2008 Shared Task)
» 24 natural entities

» 15 animals: 7 birds (eagle), 8 ground animals (lion)
» 9 plants: 4 fruits (banana), 5 greens (onion)

» 20 artifacts
» 13 tools (hammer), 7 vehicles (car)

> ESSLLIO8_Nouns[seq(1,40,5), ]
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blalesonare
Noun categorization: the ESSLLI 2008 dataset

Dataset of 44 concrete nouns (ESSLLI 2008 Shared Task)
» 24 natural entities
» 15 animals: 7 birds (eagle), 8 ground animals (lion)
» 9 plants: 4 fruits (banana), 5 greens (onion)
» 20 artifacts
» 13 tools (hammer), 7 vehicles (car)

» DSMs operationalizes categorization as a clustering task

1. for each noun w; in the dataset, take its vector w;

2. use a clustering method to group similar vectors w;

3. evaluate whether clusters correspond to gold-standard
semantic classes (purity, entropy, ...)

> ESSLLIO8_Nouns[seq(1,40,5), ]
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blalesonare
Noun categorization: example

Clustering of concrete nouns (V-Obj from BNC)

i

Cluster size
20 30 40 50 60 70 80 90

scissors
screwdriver

telephone @

> majority labels: tools, tools, vehicles, birds, greens, animals
» correct: 4/4, 9/10, 6/6, 2/3, 5/10, 7/11
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blalesonare
Noun categorization: example

Clustering of concrete nouns (V-Obj from BNC)

i

Cluster size
20 30 40 50 60 70 80 90

scissors
screwdriver

telephone @

> majority labels: tools, tools, vehicles, birds, greens, animals
» correct: 4/4, 9/10, 6/6, 2/3, 5/10, 7/11
» purity = 33 correct out of 44 = 75.0%
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Noun categorization
ESSLLI 2008 shared task

» Experiments:
» 6-way (birds, ground animals, fruits, greens, tools and
vehicles), 3-way (animals, plants and artifacts) and 2-way
(natural and artificial entities) clusterings
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Noun categorization
ESSLLI 2008 shared task

» Experiments:

» 6-way (birds, ground animals, fruits, greens, tools and
vehicles), 3-way (animals, plants and artifacts) and 2-way
(natural and artificial entities) clusterings

» Evaluation scores:

» purity — degree to which a cluster contains words from
one class only (best = 1)

» entropy — whether words from different classes are represented
in the same cluster (best = 0)

» global score across the three clustering experiments

3 3
Z Purity; — Z Entropy;
i=1 i=1
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Noun categorization
ESSLLI 2008 shared task

model 6-way 3-way 2-way global
P| E P| E|| P| E
Katrenko 89 | 13|/ 100 | 0O || 80 | 59 197
Peirsman-+ 82 | 23 84 | 34 || 86 | 55 140
dep-typed (DM) 77 | 24 79 | 38 || 59 | 97 56
dep-filtered (DM) | 80 | 28 || 75 | 51 || 61 | 95 42
window (DM) 75 | 27 68 | 51 || 68 | 89 44
Peirsman— 73 | 28 71 | 54 || 61 | 96 27
Shaoul 41 | 77 52 | 84 || 55 | 93 -106

Katrenko, Peirsman+/-, Shaoul: ESSLLI 2008 Shared Task
DM: Baroni & Lenci (2009)

And you?
> eval.clustering (ESSLLIO8_Nouns, M) # uses PAM clustering
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DSM evaluation in theory and with wordspaceEval Noun categorization

Intrinsic evaluation on word pairs: Analogy
Mikolov et al. (2013b,a); Gladkova et al. (2016)

» Task: solve analogy problems such as
> man:woman

king: 777
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DSM evaluation in theory and with wordspaceEval Noun categorization

Intrinsic evaluation on word pairs: Analogy
Mikolov et al. (2013b,a); Gladkova et al. (2016)

» Task: solve analogy problems such as
> man:woman

. king: queen
» France: Paris

Bulgaria: 777
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DSM evaluation in theory and with wordspaceEval Noun categorization

Intrinsic evaluation on word pairs: Analogy
Mikolov et al. (2013b,a); Gladkova et al. (2016)

» Task: solve analogy problems such as
» man:woman :. king:queen
» France: Paris :: Bulgaria: Sofia
» learn: learned :: go:777
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DSM evaluation in theory and with wordspaceEval Noun categorization

Intrinsic evaluation on word pairs: Analogy
Mikolov et al. (2013b,a); Gladkova et al. (2016)

» Task: solve analogy problems such as
» man:woman :. king:queen
» France: Paris :: Bulgaria: Sofia
> learn: learned :: go:went
» dog:animal :: strawberry: 777
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DSM evaluation in theory and with wordspaceEval Noun categorization

Intrinsic evaluation on word pairs: Analogy
Mikolov et al. (2013b,a); Gladkova et al. (2016)

> Task: solve analogy problems such as
» man:woman :. king:queen
» France: Paris :: Bulgaria: Sofia
> learn: learned :: go:went
» dog:animal :: strawberry: fruit
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DSM evaluation in theory and with wordspaceEval Noun categorization

Intrinsic evaluation on word pairs: Analogy
Mikolov et al. (2013b,a); Gladkova et al. (2016)

> Task: solve analogy problems such as
» man:woman :: king:queen
» France: Paris :: Bulgaria: Sofia
> learn: learned :: go:went
» dog:animal :: strawberry: fruit

» Approach 1: build DSM on word pairs as targets

mxin d(Vman:womana Vking:x)

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial — Part 3 wordspace.collocations.de 24 /80



DSM evaluation in theory and with wordspaceEval Noun categorization

Intrinsic evaluation on word pairs: Analogy
Mikolov et al. (2013b,a); Gladkova et al. (2016)

> Task: solve analogy problems such as
» man:woman :: king:queen
» France: Paris :: Bulgaria: Sofia
> learn: learned :: go:went
» dog:animal :: strawberry: fruit

» Approach 1: build DSM on word pairs as targets

mxin d(Vman:womana Vking:x) queen
» Approach 2: use vector operations in single-word DSM woman
king
Vqueen =~ Vking — Vman 1 Vwoman \
man
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blalesonare
The Google analogy task

Mikolov et al. (2013b,a)

Table 1: Examples of five types of semantic and nine types of syntactic questions in the Semantic-
Syntactic Word Relationship test set.

Type of relationship ‘Word Pair 1 ‘Word Pair 2
Common capital city Athens Greece Oslo Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago Tllinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest Tucky Tuckiest
Present Participle think thinking read reading
Nationality adjective || Switzerland Swiss Cambodia Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks

(Mikolov et al. 2013b, Tab. 1)
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blalesonare
The Google analogy task

Mikolov et al. (2013b,a)

Country and Capital Vectors Projected by PCA

> Mikolov et al. (2013b,a) Russin h
claim that their neural I Tty s o |
embeddings are good at L |
solving analogy tasks . o

= Semantic features Al s o e
encoded in linear o
subdimensions B B B

(Mikolov et al. 2013a, Fig. 2)
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DSM evaluation in theory and with wordspaceEval Noun categorization

The Google analogy task
Mikolov et al. (2013b,a)

Country and Capital Vectors Projected by PCA

> Mikolov et al. (2013b,a) -
claim that their neural T o
embeddings are good at 1
solving analogy tasks o
w Semantic features A s S B
encoded in linear v
subdimensions B T N B T
(Mikolov et al. 2013a, Fig. 2)
model syntactic semantic
word2vec  64% 55% (Mikolov et al. 2013b)
DSM 43% 60% (Baroni et al. 2014a)
FastText 82% 87% (Mikolov et al. 2018)
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Previous work
Outline

Methodology for DSM Evaluation
Previous work
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Methodology for DSM Evaluation Previous work

Making sense of evaluation results

Interpreting performance vs. picking the best run
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Methodology for DSM Evaluation Previous work

Making sense of evaluation results

Interpreting performance vs. picking the best run

1. One model, many tasks (Padé & Lapata 2007; Baroni &
Lenci 2010; Pennington et al. 2014)
» Novel DSM, one (or very few) settings tested on many tasks
» Problem: not suitable for the exploration of a large parameter
set, very limited coverage of interactions
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Making sense of evaluation results

Interpreting performance vs. picking the best run

1. One model, many tasks (Padé & Lapata 2007; Baroni &
Lenci 2010; Pennington et al. 2014)
» Novel DSM, one (or very few) settings tested on many tasks
» Problem: not suitable for the exploration of a large parameter
set, very limited coverage of interactions

2. Incremental tuning (Bullinaria & Levy 2007, 2012; Kiela &
Clark 2014; Polajnar & Clark 2014)
» Set parameter a, then b, then ¢
» Problem: order dependent, very limited coverage of
interactions
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Methodology for DSM Evaluation Previous work

Making sense of evaluation results

Interpreting performance vs. picking the best run

1. One model, many tasks (Padé & Lapata 2007; Baroni &
Lenci 2010; Pennington et al. 2014)
» Novel DSM, one (or very few) settings tested on many tasks
» Problem: not suitable for the exploration of a large parameter
set, very limited coverage of interactions

2. Incremental tuning (Bullinaria & Levy 2007, 2012; Kiela &
Clark 2014; Polajnar & Clark 2014)
» Set parameter a, then b, then ¢
» Problem: order dependent, very limited coverage of
interactions

3. Test all combinations (Baroni et al. 2014a; Levy et al. 2015;
Lapesa & Evert 2014)
» Many tasks, many parameters, all combinations
» Problem: many runs, interpreting results is a challenge
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Methodology for DSM Evaluation Previous work

Lots of variation to make sense of...
TOEFL: 504k (!!!) runs (Lapesa & Evert 2014)

TOEFL - reduced

30000~

N

0000~

number of models

10000~

Zb Ab Gb Sb 160
accuracy

We need an interpretation methodology that:

> .
> .

. is able to identify robust trends, avoiding overfitting

. is able to capture parameter interactions
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression
Outline

Methodology for DSM Evaluation

Interpreting DSM performance with linear regression

roni/Lapesa (CC-by-sa)
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

Linear regression to the rescue

> Attempts to predict the values of a “dependent” variable from
one or more “independent” variables and their combinations
» s used to understand which independent variables are closely

related to the dependent variable, and to explore the forms of
these relationships

Example

Dependent variable: income
Independent variables: gender, age, ethnicity, education level,
first letter of the surname (hopefully not significant)
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

How to interpret the evaluation results?

Our proposal: linear regression

We use linear models to analyze the influence of different DSM
parameters and their combinations on DSM performance

» dependent variable = performance
(accuracy, correlation coefficient, purity)

» independent variables = model parameters
(e.g., source corpus, window size, association score)

Motivation

We want to understand which of the parameters are related to the
dependent variable, i.e., we want to find the parameters whose
manipulation has the strongest effect on DSM performance.
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

How to interpret the evaluation results?
Our proposal: linear regression

| model performance = Bo 4+ 1 -p1+ B2 - p2 + B3 - prx2 + ... + €
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

How to interpret the evaluation results?

Our proposal: linear regression

| model performance = Bo 4+ 1 -p1+ B2 - p2 + B3 - prx2 + ... + €

1. Adjusted R?: proportion of variance explained by the model
~~ How well do we predict performance?
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

How to interpret the evaluation results?

Our proposal: linear regression

‘ model performance = Bo 4+ 1 -p1+ B2 - p2 + B3 - prx2 + ... + €

1. Adjusted R?: proportion of variance explained by the model
~~ How well do we predict performance?

2. Feature ablation: proportion of variance explained by a
parameter together with all its interactions

~~ Which parameters affect performance the most?
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

How to interpret the evaluation results?

Our proposal: linear regression

‘ model performance = B+ B1-p1+ B2 -p2+ B3 - prs2 + ... + €

1. Adjusted R?: proportion of variance explained by the model
~~ How well do we predict performance?

2. Feature ablation: proportion of variance explained by a
parameter together with all its interactions

~~ Which parameters affect performance the most?

3. Model predictions: visualization of predicted performance
~~ What are the best parameter values?
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

How well do we predict performance?
A concrete example: TOEFL, SVD (504k data points)

accuracy ~ ...

corpus window score transformation metric n.dim dim.skip rel.index |accuracy Model fit: Ade2
wacky 8 t-score none manhattan 700 [} dist 71.25
bnc 16  z-score root cosine 100 100 rank 75.00
wacky 16 MI log cosine 100 50 dist 77.50
bnc 8 frequency none cosine 900 50 rank 75.00
ukwac 16 MI none cosine 500 100 rank 81.25
bnc 8 tf.idf root cosine 300 100 rank 75.00
bnc 16 tf.idf root manhattan 300 100 dist 51.25
ukwac 2 tf.idf log manhattan 300 50 rank 53.75
ukwac 1 simple-11 log manhattan 500 100 dist 85.00

Assumption: a good linear model acts as a “smoothing" algorithm
which filters away random noise & captures robust trends.
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

How well do we predict performance?
A concrete example: TOEFL, SVD (504k data points)

accuracy ~ corpus + window + score + transformation
+ metric + rel.index

corpus window score transformation metric|n.dim dim.skip |rel.index|laccuracy Model fit: Ade2

wacky 8 t-score none manhattan| 700 [} dist 71.25 o
bnc 16  z-score root cosine| 100 100 rank| 75.00 i

wacky 16 MI log cosine| 100 50 dist 77.50 baSIC 43 A)
bnc 8 frequency none cosine| 900 50 rank| 75.00

ukwac 16 MI none cosine| 500 100 rank 81.25
bnc 8 tf.idf root cosine| 300 100 rank 75.00
bnc 16 tf.idf root manhattan| 300 100 dist 51.25

ukwac 2 tf.idf log manhattan| 300 50 rank| 53.75

ukwac 1 simple-11 log manhattan| 500 100 dist 85.00

Assumption: a good linear model acts as a “smoothing" algorithm
which filters away random noise & captures robust trends.
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

How well do we predict performance?
A concrete example: TOEFL, SVD (504k data points)

accuracy ~ corpus + window + score + transformation
+ metric + rel.index + n.dim + dim.skip

. - p2
corpus window score transformation metric|n.dim dim.skip||rel.index|laccuracy Model fit: Ade
wacky 8 t-score none manhattan|| 700 0 dist 71.25
bnc 16  z-score root cosine|l 100 100 rank| 75.00 i 0,
wacky 16 MI log cosine| 100 50! dist 77.50 baSIC 43 A)
bnc 8 frequency none cosinel| 900 50 rank| 75.00 0
ukwac 16 MI none cosine|l 500 100 rank 81.25 & SVD +24A>
bnc 8 tf.idf root cosine|| 300 100 rank 75.00
bnc 16 tf.idf root manhattan|| 300 100 dist 51.25
ukwac 2 tf.idf log manhattan| 300 50! rank| 53.75
ukwac 1 simple-11 log manhattan|| 500 100 dist 85.00

Assumption: a good linear model acts as a “smoothing" algorithm
which filters away random noise & captures robust trends.

© Evert/ i i DSM Tutorial — Part 3 wordspace.collocations.de 36 /80



Methodology for DSM Evaluation Interpreting DSM performance with linear regression

How well do we predict performance?
A concrete example: TOEFL, SVD (504k data points)

accuracy ~ corpus * window * score * transformation
* metric * rel.index * n.dim * dim.skip

corpus window score transformation metricn.dim dim.skipl|frel.index|accuracy Mode| fit: Ade2
wacky 8 t-score none manhattan|| 700 0 dist 71.25
bnc 16  z-score root cosine|l 100 100 rank| 75.00 H 0
wacky 16 MI log cosine| 100 50! dist 77.50 baSIC 43 A)
bnc 8 frequency none cosinel| 900 50 rank| 75.00
ukwac 16 MI none cosine|l 500 100 rank| 81.25 & SVD +24%
bnc 8 tf.idf root cosine|| 300 100 rank 75.00 0
bnc 16 tf.idf root manhattan|| 300 100 dist] 51.25 2-w. 22
ukwac 2 tf.idf log manhattan| 300 50! rank| 53.75 & ay + A)
ukwac 1 simple-11 log manhattan|| 500 100 dist 85.00 Total' 870/
. o

Assumption: a good linear model acts as a “smoothing" algorithm
which filters away random noise & captures robust trends.
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

Which parameters affect performance the most?

Feature ablation: parameters and interactions on TOEFL

metric g 1oer ¢ i Eff t R2
- score 10.53
transformation u .
A score:transformation 7.42
dim.skip u .
' score:metric 1.77
red.dim =
corpus:score 0.84
corpus L] .
' score:context.dim 0.64
context.dim L] -
o other int. < 0.5 0.93
win.size L] -
Feature ablation 22.13

win.direction =

relindex =

criterion =
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

Which parameters affect performance the most?

Interaction of score and transformation: effect plot

Score * Transformation

70-
60-
transformation
50- 1 none
o log
& root
4 sigmoid
frequency  tfidf Ml Dice simple-Il t-score z-score
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

So, are there general trends? (Lapesa & Evert 2014)
Datasets: TOEFL, RG65, WordSim353, ESSLLIO8 (and 3 other clust. datasets)
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Interpreting DSM performance with linear regression
So, are there general trends? (Lapesa & Evert 2014)
Datasets: TOEFL, RG65, WordSim353, ESSLLIO8 (and 3 other clust. datasets)

» Most explanatory parameters: similar across tasks/datasets
» Simple-ll * Logarithmic Transformation, Cosine Distance
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Interpreting DSM performance with linear regression
So, are there general trends? (Lapesa & Evert 2014)
Datasets: TOEFL, RG65, WordSim353, ESSLLIO8 (and 3 other clust. datasets)

» Most explanatory parameters: similar across tasks/datasets
» Simple-ll * Logarithmic Transformation, Cosine Distance

» Parameters that show variation: the amount and nature of
shared context
» Context window: 4 is a good compromise solution
» SVD: always helps, and skipping the first dimensions (but not
too many) generally helps
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

So, are there general trends? (Lapesa & Evert 2014)
Datasets: TOEFL, RG65, WordSim353, ESSLLIO8 (and 3 other clust. datasets)

» Most explanatory parameters: similar across tasks/datasets
» Simple-ll * Logarithmic Transformation, Cosine Distance

» Parameters that show variation: the amount and nature of
shared context
» Context window: 4 is a good compromise solution
» SVD: always helps, and skipping the first dimensions (but not
too many) generally helps

» Neighbor rank (almost) always better than distance
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

So, are there general trends? (Lapesa & Evert 2014)
Datasets: TOEFL, RG65, WordSim353, ESSLLIO8 (and 3 other clust. datasets)

» Most explanatory parameters: similar across tasks/datasets
» Simple-ll * Logarithmic Transformation, Cosine Distance

» Parameters that show variation: the amount and nature of
shared context

» Context window: 4 is a good compromise solution
» SVD: always helps, and skipping the first dimensions (but not
too many) generally helps

» Neighbor rank (almost) always better than distance

» Syntax (almost) never helps :( (Lapesa & Evert 2017)
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

Contrasting semantic relations (Lapesa et al. 2014)

Datasets: Semantic Priming Project, GEK priming dataset
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

Contrasting semantic relations (Lapesa et al. 2014)
Datasets: Semantic Priming Project, GEK priming dataset

» Semantic relations
» Paradigmatic (synonyms, antonyms, co-hyponyms) vs.
Syntagmatic (phrasal associates, event associates)

> Task: multiple choice
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

Contrasting semantic relations (Lapesa et al. 2014)
Datasets: Semantic Priming Project, GEK priming dataset

» Semantic relations
» Paradigmatic (synonyms, antonyms, co-hyponyms) vs.
Syntagmatic (phrasal associates, event associates)

> Task: multiple choice

» Goal: find the parameters which make the difference!

» First SVD dimensions encode topical information, detrimental
for paradigmatic relations (good to skip, also for TOEFL)

» Syntagmatic relations: larger windows sizes. Co-occur, hence
share context, but we need to enlarge the scope
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

Contrasting semantic relations (Lapesa et al. 2014)
Datasets: Semantic Priming Project, GEK priming dataset

» Semantic relations
» Paradigmatic (synonyms, antonyms, co-hyponyms) vs.
Syntagmatic (phrasal associates, event associates)
> Task: multiple choice

» Goal: find the parameters which make the difference!
» First SVD dimensions encode topical information, detrimental
for paradigmatic relations (good to skip, also for TOEFL)
» Syntagmatic relations: larger windows sizes. Co-occur, hence
share context, but we need to enlarge the scope

> Antonyms: the least canonical paradigmatic

> Larger windows, more relatedness like: antonyms co-occur
(Justeson & Katz, 1992). Topic-shifting synonyms?
» Less asymmetric (less difference between distance and rank)
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

Mid-lecture summary

» We introduced the coordinates of DSM evaluation

» We encountered (and started to get our hands dirty with) 3
standard tasks:
» Multiple choice, prediction of similarity ratings, noun
categorization
= |t is now your turn to practice, putting together all you learnt
yesterday and the wordspaceEval datasets

» We also discussed the issue of DSM evaluation methodologies
» Hopefully we persuaded you of how much variation parameter
manipulation can introduce
== maybe this motivates you even more to carry out a lot of
experiments! So let us switch to RStudio now :)
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Methodology for DSM Evaluation Interpreting DSM performance with linear regression

Coming soon ...

Target: consume - Choices: eat, breed, catch, supply
Target: constant - Choices: continuing, instant, rapid, accidental
Target: concise - Choices: succinct, powerful, positive, free

[ pre-processed corpus with linguistic annntatmn]

term-context matrix term-term matrix
(deﬂne target terms] [defme target & feature terms] o o
nouns, classes 83 nouns, 10 classes
T T day = TIME chicken = BIRD
[centext units or xggrega(es] [type & size of co~occunen(e] kiwi => FRUIT bear — LAND_MAMMAL
kitten — ANIMAL pot — KITCHENWARE

volleyball = GAME o0ak = TREE

geometric analysis

probabilistic analysis

44 nouns, 6 classes
potato —> GREEN

‘hammer = TOOL carrot = 'TABLE

[simihri(y/d\sunce measure + num\zlin(ien] car —» VEHICLE o —

¢ 2 El LE
peacock => BIRD cat => ANIMAL
dimensionality reduction Y . /

65 pairs, rated from 0 to 4
gem, jewel: 3.

grin, smile: 3.46

fruit, furnace: 0.05

embedding learned by

60 nouns, 12 classes
neural network \

353 pairs, rated from 1 to 10
announcement, news: 7.56
weapon, secret: 6.06

travel, activity: 5.00

... but not yet, there is still something we need to talk about
before turning to the practice session :)
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DSM similarity & Linguistic Theory

1. Polysemy
» A textbook challenge, we will discuss the most intuitive
solution
== ... available in wordspace!
1= Code from the lecture and extensions in hands_on_day4.R
2. Compositionality
» Above and below word level

1= Bonus evaluation dataset: derivational morphology in
(Lazaridou et al. 2013)

1z Last part of hands_on_day3.R: perform your own standard
tasks on Lazaridou2013

3. Not all meaning is distributional

» Function words, proper names (literature pointers)

Great overview paper:
Distributional Semantics and Linguistic Theory (Boleda 2020)
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Polysemy
Outline

DS beyond NLP: Linguistic evaluation
Polysemy
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i
Polysemy in DSMs

» Problem: DSM vectors conflate contexts from different senses
of a word
» contexts of “bank”: money, river, account, swim, ...
» vectors are displaced suboptimally (far from everything)
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i
Polysemy in DSMs

» Problem: DSM vectors conflate contexts from different senses

of a word

» contexts of “bank”: money, river, account, swim, ...
» vectors are displaced suboptimally (far from everything)

A

N

bank;
A broker
~bank

s bankz
_—xriver

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)
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DS beyond NLP: Linguistic evaluation Polysemy

Polysemy in DSMs

Observation: DSM vectors conflate contexts from word senses

» Solution: build a representation for each instance of the word

we want to disambiguate (Schiitze 1998)
sentence vectors
Target: bank money,
banki: The broker went to the bank to ~cash
secure his cash | bank,
banky: The river bank was steep and POk e
dangerous LN
yat > dangerous
) // , _ bank,
’/// ,”/ _ — rriver
,’/’/ - // -~ :ii -\ steep
== -~ "~ >
water
Application: word sense disambiguation
can you think about another situation in which we may need it?
wordspace.collocations.de 47 /80
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DS beyond NLP: Linguistic evaluation Polysemy

Context vectors: can we do it in wordspace?

Yes :D

library(wordspace)

# S1: “*Cats and dogs need their time"

sl <- "cat and dog need their time"
# S2: ""Time is the cause not the effect”
82 <- "time is the cause not the effect"
# Ingredients: vectors for individual words
>TT <- DSM_TermTermMatrix

breed tail feed kill important explain likely

>TT

cat 84 17
dog 579 14
animal 45 11
time 19 8
reason 1 0
cause 0 1
effect 0 1

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)
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DS beyond NLP: Linguistic evaluation Polysemy

Context vectors: can we do it in wordspace?
Yes :D

“cats and dogs need their time”

> context.vectors(TT, s1)
breed tail feed kill important explain likely
1 227.3333 13 23 78.33333 31.66667 16 34
# context.vectors() is taking the average of the values in each cell
> (TT[’cat’,’breed’]+TT[’dog’, ’breed’J+TT[’time’, ’breed’])/3
227.3333

“time is the cause not the effect”
round (context.vectors(TT, s2),3)

breed tail feed kill important explain likely
1 6.333 3.333 10 47.667 70.333 38.667 55)
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DS beyond NLP: Linguistic evaluation Polysemy

Context vectors: can we do it in wordspace?

Almost there...

# context.vectors() can also take a list as an input
contexts <- round(context.vectors(TT, c(sl, s2)),2)
# The output is a matrix, let's give it better rownames first

rownames (contexts) <- c("s1", "s2")

# ...and then append it to our original matrix
TT <- rbind(TT, contexts)

TT

breed
cat 84.00
dog 579.00

animal 45.00
time 19.00
reason 1.00
cause 0.00
effect 0.00
s1 227.33
s2 6.33

tail feed

17.00 8 38.
14.00 32 63.
11.00 86 136.
8.00 29 134.
0.00 1 18.
1.00 0 o
1.00 1 6.
13.00 23 78.
3.33 10 47.

00
00
00
00
00
00
00
33
67

1

71

55.
62.
.67
70.

31

00

00
00

00
00

33

28
28
5.
44.
140.
35.
37.
16.
38.
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Context vectors: can we do it in wordspace?
And what now?

# We can do all the cool things we are used to do with DSM matrices
# Nearest neighbors...
nearest.neighbours(TT, c("s1", "s2"), n=6)
$s1
cat dog animal time s2 cause
14.31016 17.16200 55.27587 62.66470 67.81707 77.90557

$s2
time cause effect reason animal s1
18.85097 25.19348 31.51682 40.83768 60.61621 67.81707
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Context vectors: can we do it in wordspace?

# And a semantic map!
plot(dist.matrix(TT))

reason
dog Py
L2
effect
sl
Cft . .
s2 cause
]

time
.

animal
L2

hands_on_day_4.R also contains an example for the bank polysemy, with
word2vec vectors. If you fell in love with centroids the bonus exercise in

schuetze1998.R (word sense disambiguation, advanced) is perfect for you!
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Polysemy in DSMs: contextualized word embeddings
A little detour in embeddingland: BERT

Next step: one contextualized representation per token

The;, broker;, went;, top, the;, banky, |2, swamy, toz, thep, banka, Thes,
rivers, banks, is3, steeps

» Bidirectional Encoder Representations from Transformers

> Most popular embeddings right now. Why?

» Multilingual and easily fine-tuned for specific tasks (e.g.,
question answering, sentiment analysis)
» Google open-source NLP framework (2018)
(https://github.com/google-research/bert)
* Pre-trained on Wikipedia (2.5B tokens) + Google Books
(800M tokens)

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial — Part 3 wordspace.collocations.de

53 /80


https://github.com/google-research/bert

DS beyond NLP: Linguistic evaluation Polysemy

Polysemy in DSMs: contextualized word embeddings
BERT & other Animals

Semi-supervised Sequence Learning
context2Vec
Pre-trained seq2seq

ULMFll' ELMo 7[\
Multi- mgual Transformer Bidirectional LM
Larger model
MultiFiT More data
ss-1 BERT

PT-2

Defense

Grover

+Knowledge Graph <™
Permutation LM

UDifY \rr.pNN -

Knowledge (distillation URILM

MT-DNNgp
ERN[E VisualBERT ERNIE (Baidu)
(Tsinghua) B2T2 BERT-wwi
SpanBERT . Unicoder-VL Rl
RoBERTa Neuralentity linker LXMERT
KnowBert VL:BERT

UNITER By Xiozhi Wang & Zhengyan Zhang @THUNLP

Problem: some tasks (e.g., those from) require lemma-level representations,
which need to be reconstructed “backwards”
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Compositionality
Can we capture it in DS?

» Formally: compositionality implies some operator P such that
meaning(wiwz) = meaning(w;) @ meaning(ws)
» CDSM recipe

» Distributional vectors for meaning(w;) and meaning(w»)
» Operators: mathematical stategies to combine w; and w; to
predict a vector representation for wyw,

* vector addition
* vector multiplication
* nonlinear operations learned by neural networks
» Problem: some words (e.g., not) are themselves more like
operators than points in space

Great overview paper: Frege in space: a program for
compositional distributional semantics (Baroni et al. 2014b)
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Compositionality with distributional vectors

Additive and Multiplicative Models (Mitchell and Lapata, 2010)

| music solution economy craft create
practical 0 6 2 10 4
difficulty 1 8 4 4 0
problem 2 15 7 9 1
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Compositionality with distributional vectors
Additive and Multiplicative Models (Mitchell and Lapata, 2010)

|music solution economy craft create

practical 0 6 2 10 4

difficulty 1 8 4 4 0

problem 2 15 7 9 1
p=u-+v

predicted(practical difficulty) = practical + difficulty = [1 14 6 14 4]
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Compositionality with distributional vectors
Additive and Multiplicative Models (Mitchell and Lapata, 2010)

‘music solution economy craft create

practical 0 6 2 10 4

difficulty 1 8 4 4 0

problem 2 15 7 9 1
p=u-+v

predicted(practical difficulty) = practical + difficulty = [1 14 6 14 4]

p=u®v

predicted(practical difficulty) = practical & difficulty = [0 48 8 40 0]

What is your intuition about the effect of multiplication? Have you already
seen it as an ingredient of something else?
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How do | know my composed representations are “good”?

Evaluation, again :)

1. Qualitative inspection of nearest neighbors
» Which neighbors "make more sense" ?
* practical + difficulty or practical © difficulty ?

2. Quantitative evaluation
» Collect a vector for "practical difficulty" in (obviously the
same) corpus: observed(practical difficulty)
» observed(practical difficulty) = predicted(practical difficulty)

* Which of the two produces a better approximation?
* practical + difficulty or practical ® difficulty

» Evaluation metric

* distance(predicted,observed) (Lazaridou et al. 2013)
* rank(predicted,observed) (Baroni & Zamparelli 2010; Padé
et al. 2016)
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How do | know my composed representations are “good”?
Observed vs. Predicted vector

X
predicted(practical * difficulty)

XXx
X

X
X x

observed(practical difficulty)
X X

observed(practical)

predicted(practical + difficulty)

rank(predicted(practical + difficulty)) = 5

distance(predicted(practical * difficulty))

< rank(predicted(practical * difficulty)) = 10
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Adjective-noun composition (Baroni & Zamparelli 2010)
Starting point: observed AN vectors

» Input: triples of {observed(AN), A, N}

» {bad luck, bad, luck}, {red cover, red, cover}, etc.
» 36 adjectives (size, color, temporal, etc.)

bad luck electronic communities | historical map
bad electronic storage topographical
bad weekend electronic transmission | atlas

good spirit purpose historical material
important route nice girl little war
important transport | good girl great war
important road big girl major war
major road guy small war

red cover special collection young husband
black cover general collection small son
hardback small collection small daughter
red label archives mistress

» Methods: increasing computational complexity

» No learning (additive, multiplicative)
== heavy learning: learns matrix A by comparing AN and N
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Adjective-noun composition in Baroni & Zamparelli (2010)
Best method: adjectives as matrices. Observed(AN) vs. predicted(AN): neighbors

© Evert/

SIMILAR

DISSIMILAR
adj N obs. neighbor | pred. neighbor adj N obs. neighbor | pred. neighbor
common understanding] common approach] common vision|| American affair | Am. developmenf  Am. policy
different authority diff. objective | diff. description||current dimension| left (a) current element|
different partner diff. organisation | diff. department| good complaint | current complain good beginning|
general question general issue same great field excellent field | gr. distribution
historical introduction | hist. background same historical thing | different today hist. reality
necessary qualification| nec. experience same important summer] summer big holiday
new actor new cast same large pass historical region | large dimension
recent request recent enquiry same special something| little animal special thing
small drop droplet drop white profile chrome (n) white show
young engineer young designer | y.engineering young photo important song | young image

Table 4: Left: nearest neighbors of observed and alm-predicted ANs (excluding each other) for a random set of ANs
where rank of observed w.rt. predicted is 1. Right: nearest neighbors of predicted and observed ANs for random set
where rank of observed w.rt. predicted is > 1K.
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How about unattested AN combinations?
Capturing Semantically Deviant AN Combinations (Vecchi et al. 2017)

Can we use compositional DSMs to tell, among equally
unattested AN, which one is semantically less plausible?

The composed vectors for semantically deviant (human rated)
combinations will be farther away from the head noun than the
acceptable ones

4 remarkable onion

onion

1 legislative onion

] 1 at 4 5

... they test other measures (e.g., neighbors density, vector length) as well as
different composition methods: have a look at the paper!
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How about unattested AN combinations?
Capturing Semantically Deviant AN Combinations (Vecchi et al. 2017)

Can we use compositional DSMs to tell, among equally
unattested AN, which one is semantically less plausible?

Qualitative inspection: the composed vectors of semantically
acceptable pairs have plausible nearest neighbors

a. *angry lamp { shocked, fearful, angry, defiant }

b. *nuclear fox { nuclear, nuclear arm, nuclear development, nuclear expert }
c. warm garlic { green salad, wild mushroom, sauce, green sauce }

d. spectacular striker { goal, crucial goal, famous goal, amazing goal }

hands_on_day_4.R (part 2) contains an implementation of vector
addition and multiplication in wordspace. Have fun chasing the
strangest AN combinations! And other combinations, as well
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Compositionality below word level

Can we use compositional DSMs to investigate the meaning of derivational patterns?

» Starting point: vectors for

smiles. base and derived words.
happy > Two strategies:
UN- = |earn the semantic shifts
with compositional
unhappy methods

> investigate properties of

hope the patterns — semantic
-LESS .
relations
hopeless
* zero-nominalizations
3 as hyponyms of the
people

base verb (Varvara
et al. 2021)

* un- as antonyms of
the base nouns
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The DS of Derivational Morphology (Lazaridou et al. 2013)
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T
The DS of Derivational Morphology (Lazaridou et al. 2013)

1. Input: derived/stem vector pairs for each affix

» un-: unfaithful /faithful, unbiased/biased, unwell /well
» -ly: true/truly, mad/madly, deep/deeply
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T
The DS of Derivational Morphology (Lazaridou et al. 2013)

1. Input: derived/stem vector pairs for each affix
» un-: unfaithful /faithful, unbiased/biased, unwell /well
» -ly: true/truly, mad/madly, deep/deeply
2. Goal: build one representation per affix
» No (well, little) learning (additive and multiplicative)
* un- = centroid(unfaithful, unbiased, unwell, etc.)
> Increasingly complex learning

* Parameters set during training to optimize composition,
affixes as matrices (cf. adjectives)
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Compositionality
The DS of Derivational Morphology (Lazaridou et al. 2013)

1. Input: derived/stem vector pairs for each affix
» un-: unfaithful /faithful, unbiased/biased, unwell /well
» -ly: true/truly, mad/madly, deep/deeply
2. Goal: build one representation per affix
» No (well, little) learning (additive and multiplicative)
* un- = centroid(unfaithful, unbiased, unwell, etc.)
> Increasingly complex learning
* Parameters set during training to optimize composition,
affixes as matrices (cf. adjectives)

3. Prediction & Evaluation

» Apply affix to unseen base: predicted(derived) vs.
observed(derived). Who did it best?
* Simplest (additive) & most complex (lexical functional,
theoretically motivated): comparable
* Cf. Padé et al. (2016) for German: simplest composition
methods work better!
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The DS of Derivational Morphology (Lazaridou et al. 2013)

Dataset
Affix | Stem/Der. | Training HQ/Tot. Avg.
POS Items Test Items | SDR
-able verb/adj 177 30/50 5.96
-al noun/adj 245 41/50 5.88
-er verb/noun 824 33/50 5.51
-ful noun/adj 53 42/50 6.11
-ic noun/adj 280 43/50 5.99
-ion verb/noun 637 38/50 6.22
-ist | noun/noun 244 38/50 6.16
-ity adj/noun 372 33/50 6.19
-ize noun/verb 105 40/50 5.96
-less noun/adj 122 35/50 3.72
-ly adj/adv 1847 20/50 6.33
-ment | verb/noun 165 38/50 6.06
-ness adj/noun 602 33/50 6.29
-ous noun/adj 157 35/50 5.94
-y noun/adj 404 27/50 5.25
in- adj/adj 101 34/50 3.39
re- verb/verb 86 27/50 5.28
un- adj/adj 128 36/50 3.23
tot * [ 6549 623/900 5.52

7000 base/derived pairs from CELEX, 18 patterns, training vs. test (further
annotated for base/derived relatedness and vector quality)
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DS beyond NLP: Linguistic evaluation
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Not all Semantic Knowledge is Distributional

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

DSM Tutorial — Part 3

=

wordspace.collocations.de

68 /80




DS beyond NLP: Linguistic evaluation Non distributional meaning

Not all Semantic Knowledge is Distributional

Proper names “answer the purpose of showing what thing it is
that we are talking about but not of telling anything about it”
(Mill, 1843)

» Intuition: instances of categories such as PER, ORG, etc.
» Herbelot (2015), standard DSMs: category — instance

“

> . upon encountering the name Mr Darcy for the first time in the
novel, a reader will attribute it the representation of the concept
man and subsequently specialise it as per the linguistic contexts in

which the name appears”

» Westera et al. (2021), embeddings: instance — category
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Not all Semantic Knowledge is Distributional

Proper names “answer the purpose of showing what thing it is
that we are talking about but not of telling anything about it”
(Mill, 1843)

» Intuition: instances of categories such as PER, ORG, etc.
» Herbelot (2015), standard DSMs: category — instance

> . upon encountering the name Mr Darcy for the first time in the
novel, a reader will attribute it the representation of the concept
man and subsequently specialise it as per the linguistic contexts in

which the name appears”

» Westera et al. (2021), embeddings: instance — category

Function words: some pointers

» Baroni et al. (2012) on quantifiers/entailment, Bernardi et al.
(2013) on determiners, Hole & Padé (2021) on the polysemy
of the German reflexive sich
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Wrapping up

» Distributional semantics allows us to represent (and compare)
a quite heterogeneous selection of "linguistic objects":
» Subword units (e.g., derivational affixes)

» Words (content words, proper names, function words)
» Phrases (e.g., AN)
» Entire sentences
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Wrapping up

» Distributional semantics allows us to represent (and compare)
a quite heterogeneous selection of "linguistic objects":
» Subword units (e.g., derivational affixes)

» Words (content words, proper names, function words)
» Phrases (e.g., AN)

» Entire sentences

» This is fascinating and promising, but also challenging
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Wrapping up

» Distributional semantics allows us to represent (and compare)
a quite heterogeneous selection of "linguistic objects":
» Subword units (e.g., derivational affixes)
» Words (content words, proper names, function words)
» Phrases (e.g., AN)
» Entire sentences

» This is fascinating and promising, but also challenging

» On top of the DSM parameters, also other experimental
choices (e.g., composition. methods)

» ... and this is exactly the fun of distributional semantics (at
least for us :) )

1 Now it is finally your turn to have fun
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It is practice session time!

Target: consume - Choices: eat, breed, catch, supply
Target: constant - Choices: continuing, instant, rapid, accidental
- Target: concise - Choices: succinct, powerful, positive, free

402 nouns, 21 classes
day = TIME
Kiwi = FRUIT

83 nouns, 10 classes
chicken = BIRD.
bear = LAND MAMMAL

pre-processed corpus with linguistic annotation

term-context matrix term-term matix s A, e e
volleyball —» GAME — ThE
[ [Prremre—— = sk
1 \
((context units or aggregates ) (type & size o co-occurrence ) 44 nouns, 6 classes 60 nouns, 12 classes
k potato =» GREEN ant = INSECT

hammer — TOOL carrot = VEGETABLE
car = VEHICLE train = VEHICLE
geometric analysis probabilistic analysis peacock —> BIRD cat = ANIMAL

embedding learned by
neural network

353 pairs, rated from 1 to 10
announcement, news: 7.56
weapon, secret: 6.06

travel, activity: 5.00

65 pairs, rated from 0 to 4
gem, jewel: 3.

grin, smile: 3.46

fruit, furnace: 0.05

similarity/distance measure + normalization

dimensionality reduction

Training | HQ/Tot. | Avg.
Items | Test Items | SDR
177 3050 96
25 4150 | 588
824 3350 | 551
53 4250 | 611
<ic | noun/adj 280 4350 | 599
<ion | verb/noun | 637 38050 | 622
ist | noun/noun | 244 /50 | 616
ity | adj/noun 372 3350 | 6.19
-ize | nounverb | 105 4050 | 5.96
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