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General definition of DSMs
A distributional semantic model (DSM) is a scaled and/or
transformed co-occurrence matrix M, such that each row x
represents the distribution of a target term across contexts.
get see use hear eat kill
knife | 0.027 | -0.024 | 0.206 | -0.022 | -0.044 | -0.042
cat | 0.031 0.143 | -0.243 | -0.015 | -0.009 | 0.131
dog | -0.026 | 0.021 | -0.212 | 0.064 0.013 0.014
boat | -0.022 | 0.009 | -0.044 | -0.040 | -0.074 | -0.042
cup | -0.014 | -0.173 | -0.249 | -0.099 | -0.119 | -0.042
pig | -0.069 | 0.094 | -0.158 [ 0.000 | 0.094 | 0.265
banana | 0.047 | -0.139 | -0.104 | -0.022 | 0.267 | -0.042
Term = word, lemma, phrase, morpheme, word pair, ...
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General definition of DSMs

Mathematical notation:
» k x n co-occurrence matrix M € R¥*" (example: 7 x 6)

» k rows = target terms
» n columns = features or other dimensions

miy Mz - Myp

mzy My -+ M2y
M =

M1 Mgy -c- Mgy

» distribution vector m; = i-th row of M, e.g. m3 = mg,; € R”

» components m; = (m,-l, mio, ..., min) = features of i-th term:

m3 = (—0.026,0.021, —0.212,0.064,0.013,0.014)

= (m31, m3p, m33, M34, M35, M3g)
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DSM parameters

Term-term matrix

Term-term matrix records co-occurrence frequencies with feature
terms for each target term

15 Mygee = collocational profile of dog (~ word sketch) &
-L

> c? T Q
[ ; ke N X
i _ FIES&FE
LLLE cat | 83 |17 7 [37 | -] 1 -
my - dog | 561|13] 30|60 [ 1] 2 | 4
M — : animal | 42 |10[{109[134[13] 5 | 5
- time | 1919129 (11781 34 |109
: reason 1 | -] 2 |14 68140 47
m, --- cause | — | 1] — [ 4 [55] 34|55
- N effect - |-11716 [60f35]17

> TT <- DSM_TermTerm
> head(TT, Inf) # extract full co-oc matrix from DSM object
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A taxonomy of DSM parameters
Outline

DSM parameters
A taxonomy of DSM parameters
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DSM parameters

Term-context matrix

Term-context matrix records frequency of term in each individual
context unit (e.g. document, tweet, encyclopaedia article)

15 fyog = texts related to or mentioning dogs Q*G\ N
() O Q
l N ~ $
F & & ITFS
~ _ ¢ Q¢ QT Yo
fro-- cat [T0[I0] 7 [ - [-[-]-
- dog[= [0 & [T =[|~-]-
F— : animal [ 2 [15 10| 2 [-]-|-
B : time [ T [ -1 - 21171~
: reason | — 1 - 1411
fo - cause | — | - | - | 2 |1[2]6
B - effect | — - - 1 1-111-
> TC <- DSM_TermContext
> head(TC, Inf)
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Building a distributional model
[pre—processed corpus with linguistic annotation]
term-context matrix \tfrm—term matrix
[define target terms] [define target & feature terms

!

type & size of co-occurrence

[context units or aggregates]

\

geometric analysis

probabilistic analysis

feature scaling embedding learned by

neural network

{similarity/distance measure + normalization]

1

[dimensionality reduction ]
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DSM parameters A taxonomy of DSM parameters DSM parameters A taxonomy of DSM parameters

Building a distributional model Definition of target and feature terms

» Choice of linguistic unit (targets # features)
> words
bigrams, trigrams, ...
multiword units, named entities, phrases, ...

| 4
>
define target & feature terms » morphemes
» word pairs (¥ analogy tasks)

[pre—processed corpus with linguistic annotation]

term-term matrix

term-context matrix

define target terms

[context units or aggregates] [type & size of co—occurrence]

> Mapping to target/feature terms (= linguistic annotation)
» word forms (minimally requires tokenisation)
» often lemmatisation or stemming to reduce data sparseness:

geometric analysis .
go, goes, went, gone, going — go

probabilistic analysis

embedding learned by » POS disambiguation (light/N vs. light/A vs. light/V)
neural network » word sense disambiguation (bankiyer vs. bankfinance)
[similarity/distance measure + normalization] > abstraction: POS tags (or n-grams of POS tags) as features
[dimensionality reduction] 1 What is the effect of these choices?
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DSM parameters A taxonomy of DSM parameters DSM parameters A taxonomy of DSM parameters

Effects of term mapping Effects of term mapping
Nearest neighbours of walk (BNC) Nearest neighbours of arrivare (Repubblica)
word forms lemmatised + POS word forms lemmatised + POS
> stroll > hurry > giungere > giungere
» walking » stroll » raggiungere > aspettare
> walked > stride > arrivi > attendere
> go > trudge » raggiungimento » arrivo (noun)
» path > amble > raggiunto > ricevere
» drive » wander > trovare » accontentare
> ride » walk (noun) » raggiunge » approdare
» wander » walking » arrivasse > pervenire
> sprinted > retrace > arrivera > venire
> sauntered > scuttle > concludere »> piombare

http://clic.cimec.unitn.it/infomap-query/ http://clic.cimec.unitn.it/infomap-query/
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DSM parameters A taxonomy of DSM parameters

Selection of target and feature terms

» Full-vocabulary models are often unmanageable
> 762,424 distinct word forms in BNC, 605,910 lemmata
> large Web corpora have > 10 million distinct word forms
> low-frequency targets (and features) are not reliable (“noisy”)
» Frequency-based selection
» corpus frequency f > Fi, or n, most frequent terms
» sometimes upper threshold for features: Frpin < f < Fhax
» Relevance-based selection of features
» criterion from information retrieval: document frequency df
(high df =» uninformative / low df = too sparse to be useful)
» alternatives: entropy H or chi-squared statistic X?
» Other criteria
» POS-based filter: no function words, only verbs, nouns, ...
» general dictionary, words required for particular task, ...
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DEIVETENEEEE  Context type & size

Term-context matrix: choice of context unit

» Features are usually tokens of the selected context unit, i.e.
individual instances of a
» document, novel, Wikipedia article, Web page, ...
> paragraph, sentence, tweet, ...
= “co-occurrence” f; = frequency of term i in context token j

» Similar context tokens can be aggregated, e.g.

» feature = cluster of near-duplicate documents
» feature = syntactic structure of sentence (ignoring content)
» feature = all tweets from same author (“supertweet”)

= f; = pooled frequency count for aggregate j

» Generalization: context types

» e.g. pattern of POS tags around target word
> e.g. subcategorisation pattern of target verb

© Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial — Part 2 wordspace.collocations.de
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DSM parameters Context type & size

Building a distributional model

[pre—processed corpus with linguistic annotation]

\tfrm_term matrix

[define target terms] [define target & feature terms

!

type & size of co—occurrence]

term-context matrix

context units or aggregates

geometric analysis probabilistic analysis

feature scaling embedding learned by

neural network

{similarity/distance measure + normalization

[dimensionality reduction ]
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DEVIEESEEE  Context type & size

Building a distributional model

[pre—processed corpus with linguistic annotation]

\tfrm-term matrix

[define target & feature terms]

term-context matrix

[define target terms]

[context units or aggregates] type & size of co-occurrence

\

geometric analysis

probabilistic analysis

feature scaling embedding learned by

neural network

{similarity/distance measure + normalization]

1

[dimensionality reduction ]
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DSM parameters Context type & size DSM parameters Context type & size

Term-term matrix: definition of co-occurrence context Surface context

» Different types of co-occurrence (Evert 2008)
» surface context (word or character window)
» textual context (non-overlapping segments)
» syntactic context (dependency relations)
== from research into collocations

Context term occurs within a span of k words around target.

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It's
midsummer; the living room has its instruments and other objects
in each of its corners.  [L3/R3 span, k = 6]

» Context size

» small context (few words, syntactic relation) = more specific Parameters:

> large context (many words, entire document) = more general . .
> span size (in words or characters)

» Different roles of co-occurrence context » symmetric vs. one-sided span
» unstructured context =» acts as a filter for counts » uniform or “triangular” (distance-based) weighting (don't!)

» structured context =» subcategorizes feature terms > spans clamped to sentences or other textual units?

1 What effects do you expect from these choices?
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Effect of span size Textual context

Nearest neighbours of dog (BNC)
Context term is in the same linguistic unit as target.

2-word span 30-word span

> cat > kennel The sn_lhou.ette of the sun beyo_nd a Wlde—_open_ bay on the I,ake; the
sun still glitters although evening has arrived in Kuhmo. It's

» horse » puppy . .. . .
midsummer; the living room has its instruments and other objects

> fox > pet . .
in each of its corners.

> pet » bitch

> rabbit > terrier Parameters:

> pig > rottweiler » choice of linguistic unit

» animal » canine > sentence

» mongrel > cat > paragraph

= ot > bark > turn in a conversation

sheep to bar > Web page
> pigeon » Alsatian > tweet

http://clic.cimec.unitn.it/infomap-query/

1= similar to large surface spans, but more self-contained

© Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial — Part 2 wordspace.collocations.de 20/91 © Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial — Part 2 wordspace.collocations.de 21/91




DSM parameters Context type & size

Syntactic context

Context term is linked to target by a syntactic dependency
(e.g. subject, modifier, ...).

,f””—‘__——__—-\‘\‘\m;
The 'Ihouette@sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It's
midsummer; the living room has its instruments and other objects
in each of its corners.

Parameters:
> types of syntactic dependency (Pad6 & Lapata 2007)
» maximal length of dependency path (1 for direct relation)

» homogeneous data (e.g. only verb-object) vs.
heterogeneous data (e.g. all children and parents of the verb)

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)
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DEIVETENEEEE  Context type & size

Comparison of co-occurrence contexts

Contexts range from general /implict to specific/explicit:

features are

textual / large span from same topic domain

small span collocations

attributes
(focus on aspect)

syntactic
(single relation)

knowledge pattern properties

DSM Tutorial — Part 2
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DSM parameters Context type & size

“Knowledge pattern” context

Context term is linked to target by a lexico-syntactic pattern
(text mining, cf. Hearst 1992, Pantel & Pennacchiotti 2008, etc.).

In Provence, Van Gogh painted with bright colors such as red and
yellow. These colors produce incredible effects on anybody looking
at his paintings.

Parameters:
» inventory of lexical patterns

> lots of research to identify semantically interesting patterns
(cf. Almuhareb & Poesio 2004, Veale & Hao 2008, etc.)

» fixed vs. flexible patterns

> patterns are mined from large corpora and automatically
generalised (optional elements, POS tags or semantic classes)

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)
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DEVIEESEEE  Context type & size

Structured vs. unstructured context

» In unstructered models, context specification acts as a filter

» determines whether context token counts as co-occurrence
» e.g. must be linked by any direct syntactic dependency relation

» In structured models, feature terms are subtyped

> depending on their position in the context
> e.g. left vs. right context, type of syntactic relation, etc.

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)
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DSM parameters Context type & size

Structured vs. unstructured surface context

A dog bites a man. The man’'s dog bites a dog. A dog bites a man.

unstructured | bite
dog | 4
man 3

= data are less sparse (L/R context aggregated)

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

structured | bite-L | bite-R
dog 1 3
man 2 1

= more sensitive to semantic distinctions
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[DSIVECETETNE I Feature scaling

Building a distributional model

[pre—processed corpus with linguistic annotation]

\tf:rm—term matrix

[define target terms] [define target & feature terms]

!

[type & size of co-occurrence

term-context matrix

[context units or aggregates]

geometric analysis probabilistic analysis

feature scaling

embedding learned by
neural network

[similarity/distance measure + normalization]

1

[dimensionality reduction ]
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DSM parameters Context type & size

Structured vs. unstructured dependency context

A dog bites a man. The man's dog bites a dog. A dog bites a man.

unstructured | bite
dog | 4
man 2

= data are less sparse (all syntactic relations aggregated)

A dog bites a man. The man's dog bites a dog. A dog bites a man.

structured | bite-subj | bite-obj
dog 3 1
man 0 2

= more sensitive to semantic distinctions
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[DSIVELETET ST Feature scaling

Marginal and expected frequencies

» Matrix of observed co-occurrence frequencies not sufficient

target feature 0] R C E

dog small 855 33,338 490,580 134.34

dog domesticated 29 33,338 918 0.25
> Notation

» O = observed co-occurrence frequency

» R = overall frequency of target term = row marginal frequency
» C = overall frequency of feature = column marginal frequency
» N = sample size = size of corpus

> Expected co-occurrence frequency (cf. Evert 2008)
_R-C

E _
N +~—— O
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et el
Obtaining marginal frequencies (Evert 2008)

» Term-document matrix
» R = frequency of target term in corpus
» C = size of document (# tokens)
» N = corpus size

» Syntactic co-occurrence
» # of dependency instances in which target/feature participates
» N = total number of dependency instances
» N, R, C can be computed from full co-occurrence matrix M

» Textual co-occurrence
» R, C, O are “document” frequencies, i.e. number of context
units in which target, feature or combination occurs
» N = total # of context units

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)
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[DSIVECETETNE I Feature scaling

Marginal frequencies in wordspace

DSM objects in wordspace (class dsm) include marginal
frequencies as well as counts of nonzero cells for rows and columns.

> TT$rows

term f nnzero
1 cat 22007 5
2 dog 50807 7
3 animal 77053 7
4 time 1156693 7
5 reason 95047 6
6 cause 54739 5
7 effect 133102 6
> TT$cols

> TT$globals$N
[1] 199902178
> TT$M +# the full co-occurrence matrix

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)
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stz
Obtaining marginal frequencies (Evert 2008)

» Surface co-occurrence

> it is quite tricky to obtain fully consistent counts
> at least correct E for span size k (= # tokens in span)!

R-C
E—k - =
N

with R, C = individual corpus frequencies and N = corpus size

> can also be implemented by pre-multiplying R’ = k - R
» approach used for all pre-compiled surface DSMs in the course

= alternatively, compute marginals and sample size by summing
over full co-occurrence matrix (= E as above, but inflated N)

INB: shifted PPMI (Levy & Goldberg 2014) corresponds to a post-hoc
application of the span size adjustment. It performs worse than PPMI, but
paper suggests they already approximate correct E by summing over matrix M.
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T
Building a distributional model

[pre—processed corpus with linguistic annotation]

\tfrm—term matrix

[define target terms] [define target & feature terms

!

type & size of co-occurrence

term-context matrix

[context units or aggregates

\

geometric analysis

probabilistic analysis

feature scaling embedding learned by

neural network

[similarity/distance measure + normalization]

1

[dimensionality reduction ]

DSM Tutorial — Part 2
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[DSIVEEIEINE S Feature scaling

Feature scaling

» M is often dominated by few very large entries
(= highly skewed frequency distribution due to Zipf's law)

» Logarithmic scaling: O’ = log(O + 1)
(cf. Weber-Fechner law for human perception)

> Statistical association measures (Evert 2004, 2008) take
frequency of target term and feature into account
» usually based on comparison of observed and expected
co-occurrence frequency
» measures differ in how they balance O and E
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[DSIVECETETNE I Feature scaling

Other association measures

» simple log-likelihood (= local-MI)

G2:iz-(o-|og2%—(o—5)>

with positive sign for O > E and negative sign for O < E

» Dice coefficient
- R+C

» Many other association measures (AMs) available, often
based on full contingency tables (see Evert 2008)
» http://www.collocations.de/
» http://sigil.r-forge.r-project.org/
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DEIVILEEEEIEN  Feature scaling

Simple association measures

» pointwise Mutual Information (MI)

)
MI = log, —
08> E
» local Ml o
local-MI = O - Ml = O - log, 5
» t-score
. O-—E
VO
target feature o E Ml local-MI  t-score
dog small 855 13434 2.67 2282.88 24.64

dog domesticated 29 0.25 6.85 198.76 5.34
dog sgjkj 1 0.00027 11.85 11.85 1.00
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[DSIVELETET ST Feature scaling

Applying association scores in wordspace

> options(digits=3) # print fractional values with limited precision
> dsm.score(TT, score="MI", sparse=FALSE, matrix=TRUE)
breed tail feed kill important explain 1likely

cat 6.21 4.568 3.129 2.801 -Inf 0.0182 —-Inf
dog 7.78 3.081 3.922 2.323 -3.774 -1.1888 -0.4958
animal 3.50 2.132 4.747 2.832 -0.674 -0.4677 -0.0966
time -1.65 -2.236 -0.729 -1.097 -1.728 -1.2382 0.6392
reason -2.30 -Inf -1.982 -0.388 1.472 4.0368 2.8860
cause -Inf -0.834 -Inf -2.177 1.900 2.8329 4.0691
effect -Inf -2.116 -2.468 -2.459 0.791 1.6312 0.9221

15 gparseness of matrix representation is lost (try with TC!)
1= cells with score x = —o0 are inconvenient

1= distribution of scores may be even more skewed than
co-occurrence frequencies themselves (esp. for G2)

DSM Tutorial — Part 2
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[DSIVEEIEINE S Feature scaling

Sparse association measures

» Sparse association scores are cut off at zero, i.e.

f(X):{X x>0
0 x<0

» Also known as “positive” scores
» PPMI = positive pointwise Ml (e.g. Bullinaria & Levy 2007)
» wordspace computes sparse AMs by default = "MI" = PPMI
> Preserves sparseness if x < 0 for all empty cells (O = 0)
> sparseness may even increase: cells with x < 0 become empty

» Further thinning may be beneficial (Polajnar & Clark 2014)

» apply shifted cutoff threshold x > 6 (Levy et al. 2015)
> keep only k top-scoring features for each target

DSM Tutorial — Part 2 wordspace.collocations.de
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[DSIVECETETNE I Feature scaling

Association scores & transformations in wordspace

> dsm.score(TT, score="MI", matrix=TRUE) # PPMI

breed tail feed kill important explain likely
cat 6.21 4.57 3.13 2.80 0.000 0.0182 0.000
dog 7.78 3.08 3.92 2.32 0.000 0.0000 0.000
animal 3.50 2.13 4.75 2.83 0.000 0.0000 0.000
time 0.00 0.00 0.00 0.00 0.000 0.0000 0.639
reason 0.00 0.00 0.00 0.00 1.472 4.0368 2.886
cause 0.00 0.00 0.00 0.00 1.900 2.8329 4.069
effect 0.00 0.00 0.00 0.00 0.791 1.6312 0.922

> dsm.score(TT,
> dsm.score(TT,

score="simple-11",
score="simple-11",

matrix=TRUE)
transf="log", matrix=T)

# logarithmic co-occurrence frequency
> dsm.score(TT, score="freq", transform="log", matrix=T)

# now try other parameter combinations
> 7dsm.score # read help page for available parameter settings

DSM Tutorial — Part 2
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DEIVILETETEETE  Feature scaling

Score transformations

An additional scale transformation can be applied in order to
de-skew association scores:
» signed logarithmic transformation

f(x) = *log(|x] + 1)
» sigmoid transformation as soft binarization
f(x) = tanh x
» sparse AM as (shifted) cutoff transformation (aka. ReLU)
/ <

o~ —| w—log
= sigmoid
—— sparse
= = shifted

’
’
Z

f(x)
\

DSM Tutorial — Part 2
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DEIVIEEEEIEE  Measuring distance

Building a distributional model

[pre—processed corpus with linguistic annotation]

\term-term matrix

term-context matrix

[define target terms} [define target & feature terms]

!

type & size of co-occurrence

[context units or aggregates]

\

geometric analysis

feature scaling

similarity /distance measure + normalization

dlmen5|onal|ty reductlon

probabilistic analysis

embedding learned by
neural network

DSM Tutorial — Part 2
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PEIVREEINEEEE  Measuring distance

Geometric distance = metric

DEVEEEEIEE  Measuring distance

Geometric distance = metric

» Distance between vectors *2 > Distance between vectors 2,
u,v € R" = (dis)similarity 6 u u,v € R" = (dis)similarity ol u
> u=(u1,...,U,) 5 > u=(u1,...,U) st
> VI(V17~--,Vn) 4 & (2,7) =5 > V=(V1,---,Vn) 4 dy (i,7) =5
» Euclidean distance d; (u,v) | e =se » Hamming distance dj (u, v) not ;] w@n=3s
» “City block” Manhattan >l <V very useful for DSM 1 <« V
distance dj (u,v) A > Extension of the Minkowski 4
» Both are special cases of the —t—ttt—t> p-distance dp (u,v) —tt—tt>
Minkowski p-distance dp (u, v) 12 3 4 5 6 M (for0<p<1) 1oz o3 4 s 6 M
(for p € [1,00])
dp (u,v) = |ug —vi|P + -+ + |up — vp|P

1
dp (u,v) = (|u1 —vi|P U, — Vn|p) /p

do (u,v) = #{i | uj # vi}

doo (u,v) = max{|u1 — val,..., |un — vpl}
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PEIVEEEEEEE  Measuring distance

Computing distances

DEIVIEEEEIEE  Measuring distance

Distance and vector length = norm

» Intuitively, distance
d (u,v) should correspond
to length [ju — v|| of
displacement vector u —v
» d(u,v) is a metric
> |ju—v| is a norm
> [Jul| = d(u,0)
» Any norm-induced metric
is translation-invariant

Preparation: store “scored” matrix in DSM object

> TT <- dsm.score(TT, score="freq", transform="log")

Compute distances between individual term pairs ...

> pair.distances(c("cat","cause"), c("animal","effect"),
TT, method="euclidean")
cat/animal cause/effect
4.16 1.53

» Minkowski p-norm with
dp (u,v) = [lu— v,

origin

. or full distance matrix.

1
lullp = (uslP + - + [un?) P

lullp := lun]® + - -+ [unl”

lullo = #{i | ui # 0}

for1<p
for0<p<1

lulloe = max{ul,... [ual}

> dist.matrix(TT, method="euclidean")
> dist.matrix(TT, method="minkowski", p=4)
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PEIVREEINEEEE  Measuring distance

Normalisation of row vectors

Part 1: geometric distances Two dimensions of English V-Obj DSM

only meaningful for vectors
of the same length ||x]|
Normalize by scalar division: knife
X' =x/||x|| = (HXTIH’HXTzH’)

with [|x'|| =1 " a=543°

80
|

use
60
|

Norm must be compatible i "
with distance measure!

40

20
|

Special case: scale x > 0 to

stochastic vector with
IxX[[1 = |xaf + -+ [xa ’
=>» probabilistic interpretation

DSM Tutorial — Part 2
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PEIVEEEEEEE  Measuring distance

Distance measures for non-negative vectors

» Information theory: Kullback-Leibler (KL) divergence for

stochastic vectors (non-negative x > 0 and ||x||; = 1)
n U
D(ufv) = u; - log, 71
i=1 i

Properties of KL divergence

» most appropriate for a probabilistic interpretation of M
zeroes in v without corresponding zeroes in u are problematic
not symmetric, unlike geometric distance measures
alternatives: skew divergence, Jensen-Shannon divergence

vYyyvy

> A symmetric distance metric (Endres & Schindelin 2003)

utv
2

Dy = D(u||z) + D(v||z) with z=

DSM Tutorial — Part 2
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DEVEEEEIEE  Measuring distance

Norms and normalization

> rowNorms (TT$S, method="euclidean")
cat dog animal time reason cause effect
6.90 8.96 8.82 10.29 8.13 6.86 6.52

> TT <- dsm.score(TT, score="freq", transform="log",
normalize=TRUE, method="euclidean")

> rowNorms (TT$S, method="euclidean") # all = 1 now

> dist.matrix(TT, method="euclidean")

cat dog animal time reason cause effect
cat 0.000 0.224 0.473 0.782 1.121 1.239 1.161
dog 0.224 0.000 0.398 0.698 1.065 1.179 1.113
animal 0.473 0.398 0.000 0.426 0.841 0.971 0.860
time 0.782 0.698 0.426 0.000 0.475 0.585 0.502
reason 1.121 1.065 0.841 0.475 0.000 0.277 0.198
cause 1.239 1.179 0.971 0.585 0.277 0.000 0.224
effect 1.161 1.113 0.860 0.502 0.198 0.224 0.000
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Similarity measures
> Angle o between vectors o } .
n - . Two dimensions of English V-Obj DSM
u,v € R" is given by o
8
n
doiq Ui Vi s
cosa = i=1 = i
2 2 nife
Vi Ui i v 3 °
UTV @ "\
= e 2 81 . a=543°
[[ufl2 - [|v[|2
g
» cosine measure of boat %
.. P o | o \
similarity: cos 8 ' dog
. L]
> cosa =1 = collinear . S
T T T T T T
> cosa = 0 = orthogonal 0 20 40 60 80 100 120
» Corresponding metric: get
angular distance «
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PEIVREEINEEEE  Measuring distance

Euclidean distance or cosine similarity?

oo (u,v) = lu—vll2 = > (uj = vi)>
= \/Zuiz—l—Zv’-z—ZZuivf

= /lul3 + v]3 —2uTv

=+/2 —2cos ¢

= dy (u,v) is a monotonically increasing function of ¢

Euclidean distance and cosine similarity are equivalent: if vectors
have been normalised (||ul|2 = ||v||2 = 1), both lead to the same
neighbour ranking.

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)
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TS AT
Building a distributional model

[pre—processed corpus with linguistic annotation]

\tf:rm—term matrix

[define target terms] [define target & feature terms]

!

type & size of co-occurrence

term-context matrix

[context units or aggregates]

geometric analysis probabilistic analysis

feature scaling

embedding learned by
neural network

{similarity/distance measure + normalization]

dimensionality reduction

DSM Tutorial — Part 2
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DEVEEEEIEE  Measuring distance

Similarity measures for non-negative vectors

» Generalized Jaccard coefficient = shared features

27:1 min{u,-, V,'}

Sy max{uj, vi}

» 1 — J(u,v) is a distance metric (Kosub 2016)

J(u,v) =

» An asymmetric measure of feature overlap (Clarke 2009)

St min{u;, vi}

ofu,v) = ==
= 1
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DSM parameters Dimensionality reduction

Dimensionality reduction = model compression

» Co-occurrence matrix M is often unmanageably large
and can be extremely sparse

» Google Web1T5: 1M x 1M matrix with one trillion cells, of
which less than 0.05% contain nonzero counts (Evert 2010)

= Compress matrix by reducing dimensionality (= rows)

» Feature selection: columns with high frequency & variance

» measured by entropy, chi-squared test, nonzero count, ...
» may select similar dimensions and discard valuable information

» Projection into (linear) subspace
> principal component analysis (PCA)
> independent component analysis (ICA)
» random indexing (RI)
= intuition: preserve distances between data points

DSM Tutorial — Part 2
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DRIV EEEEE  Dimensionality reduction BEVILEEEEE  Dimensionality reduction

Dimensionality reduction & latent dimensions Dimensionality reduction & latent dimensions
Landauer & Dumais (1997) claim that LSA dimensionality 27 s,
reduction (and related PCA technique) uncovers latent P el
dimensions by exploiting correlations between features. w —-—

home
MREMBR0 ook
. noun buy  sell soul Mﬁ‘m|
» Example: term-term matrix antique | 512 550 o liuor gl e
» V-Obj co-oc. extracted from BNC bread 5.96 3.99 _ stoy  idea
> targets = noun lemmas computer | 6.75  6.83 @ ‘“'°’:‘:ple -
> features = verb lemmas factory 4.95  4.72 < yw
group 493 4.28 man
» feature scaling: association scores jewellery | 5.11 573 supply
(SketchEngine log Dice) mill 514 541 ~ o
) people 3.00 4.26 g present
» k = 186 nouns with fbuy + f;e” > 25 record 6.81 6.68
» n = 2 dimensions: buy and sell souvenir | 5.45  4.67 o
ticket 8.93 8.74 T T T T T T
0 2 4 6 8 10
buy
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DEWVEEEEEE  Dimensionality reduction DEVEEEEE  Dimensionality reduction

Motivating latent dimensions & subspace projection Dimensionality reduction by PCA
» The latent property of being a commodity is “expressed” <+ L.
through associations with several verbs: sell, buy, acquire, . .. . L.

» Consequence: these DSM dimensions will be correlated o -
» |dentify latent dimension by looking for strong correlations o
(or weaker correlations between large sets of features) 3
» Projection into subspace V of k < n latent dimensions N
as a “noise reduction” technique =» LSA '
» Assumptions of this approach:
<It‘ -

> “latent” distances in V are semantically meaningful
» other “residual” dimensions represent chance co-occurrence
patterns, often particular to the corpus underlying the DSM
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Dimensionality reduction by PCA

sell

variance = 2.14

T T T T
-4 -2 0 2

buy
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DRV RETEEE S Dimensionality reduction

Step 3: Further orthogonal dimensions

wordspace.collocations.de

soul
° liquor
0

story idea

sell

information e

-2

buy
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B e
Dimensionality reduction by PCA

< 4
o 4
o \ \ NN
3
(}I —]
<'r —]
riance = 2.43
T T T T T
-4 2 0 2 4
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Dimensionality reduction by PCA

> Principal component analysis (PCA)

» orthogonal projection into orthogonal latent dimensions

» finds optimal subspace of given dimensionality (such that
orthogonal projection preserves distance information)

» but requires features centered at 0 = no longer sparse

» Singular value decomposition (SVD)

» the mathematical algorithm behind PCA
» often applied without centering in distributional semantics
» optimality of subspace not guaranteed

> NB: row vectors should be renormalised after PCA/SVD

> unless cosine similarity / angular distance is used
== also normalise vectors before dimensionality reduction

DSM Tutorial — Part 2
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DEIVEEIN S Dimensionality reduction

Dimensionality reduction by RI

» Random indexing (RI)
> project into random subspace (Sahlgren & Karlgren 2005)
» reasonably good if there are many subspace dimensions
> can be performed online w/o collecting full co-oc. matrix

sell

variance = 2.14

buy
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DEWVEEEEEE  Dimensionality reduction

Dimensionality reduction as matrix factorization

» PCA is based on singular value decomposition (SVD),
which factorises any matrix M into

M=UxV"

where U and V are orthogonal and X is a diagonal matrix of
singular values 01 >0, > - >0, >0

DSM Tutorial — Part 2 wordspace.collocations.de
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DEWVIEEEEER  Dimensionality reduction

Dimensionality reduction in practice

# SVD is the algorithm behind PCA dimensionality reduction
> TT2 <- dsm.projection(TT, n=2, method="svd")

> TT2
svdil svd2
cat -0.733 -0.6615
dog -0.782 -0.6110
animal -0.914 -0.3606
time -0.993 0.0302
reason -0.889 0.4339
cause -0.817 0.5615
effect -0.871 0.4794
> x <= TT2[, 1] # first latent dimension
>y <= TT2[, 2] # second latent dimension

> plot(x, y, pch=20, col="red",
xlim=extendrange(x), ylim=extendrange(y))
> text(x, y, rownames(TT2), pos=3)

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)
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DSM parameters Dimensionality reduction

Dimensionality reduction as matrix factorization

» Columns a; of U and b; of V (singular vectors) are
orthogonal (a/a; = 0) and of unit length (||a;|| = 1)
> Key property: truncated SVD gives best least-squares

approximation in r-dimensional subspace

: : o1 N
UzVv/=la - al- v :
: . Zr or br
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DRIV EEEEE  Dimensionality reduction

Dimensionality reduction as matrix factorization

» Truncated SVD as orthogonal projection
MV, = Urzr = Ul-al ce U'r.ar

= method="svd" in dsm.projection()

> U% > a% > ... = amount of distance information (i.e. variance
of M) captured by each latent dimension

DSM Tutorial — Part 2
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DEWVEEEEEE  Dimensionality reduction

Power-scaling in practice

> TT2 <- dsm.projection(TT, n=2, method="svd", power=0)

> TT2

svdl svd2
cat -0.322 -0.5110
dog -0.343 -0.4721

animal -0.401 -0.2786
time -0.436 0.0233
reason -0.390 0.3353
cause -0.359 0.4338
effect -0.383 0.3704

# power-scaling can also be applied post-hoc

> sigma <- attr(TT2, "sigma") # singular values

> scaleMargins(TT2, cols=sigma~0.5) # P = 1/2

> scaleMargins(TT2, cols=sigma) # unscaled (P = 1)

DSM Tutorial — Part 2 wordspace.collocations.de
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BEVILEEEEE  Dimensionality reduction

Scaling latent dimensions

» Truncated SVD omits latent dimensions that capture
relatively little distance information (here r = 400)

» Skip first k dimensions, e.g. k = 50 (Bullinaria & Levy 2012)

» Power-scaling of dimensions: o (Caron 2001)
» Bullinaria & Levy (2012) report positive effect
» esp. with P = 0 to equalize dimensions (whitening)

typical singular values o skip first 50 dimensions

100 200 300 0

latent SV Gimensions.

00 02 04 06 08 10
00 02 04 06 08 10

o 100 200 300 400

latent SVD dimensions.

power scaling P = 1/2 power scaling P =0

00 02 04 06 08 10
00 02 04 06 08 10

o 100 200 300 400

latent SVD dimensions.
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Sliciei Ry el
Other matrix factorization techniques

» Non-negative matrix factorization (NMF)
» U and V are stochastic matrices (a; > 0 and ||a;||; = 1)

> cross-entropy instead of least-squares approximation
> iterative algorithm with random initialisation for rank-r

approximation (# sequence of ordered components)

» NMF of term-document matrix <= LDA topic model

UZV' = gjaib] + opash] 4 g3asb] + ...
» a; = probability distribution of words in i-th topic
» b; = distribution of topic across documents
> Levy et al. (2015, 213) show that word2vec embeddings
implicitly factorize a shifted PPMI matrix
» sigmoid loss function, weighted towards high frequencies
> similarly, GloVe (Pennington et al. 2014) factorizes matrix
of conditional probabilities with a frequency-weighted
least-squares approximation
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Building a DSM Sparse matrices
Outline

Building a DSM
Sparse matrices
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2 e
Sparse matrix representation

» Invented example of a sparsely populated DSM matrix

‘ eat get hear kill see use
boat . 59 . . 39 23
cat . . . 26 58 .
cup . 98 - . :
dog | 33 - 42 . 83 .
knife . . . - . 84
pig 9 . - 27 . .

» Store only non-zero entries in compact sparse matrix format

row | col | value row | col | value
1 2 59 4 1 33
1 5 39 4 3 42
1 6 23 4 5 83
2 4 26 5 6 84
2 5 58 6 1 9
3 2 98 6 4 27
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Building a DSM Sparse matrices

Scaling up to the real world

» So far, we have worked on minuscule toy models
== We want to scale up to real world data sets now

» Example 1: window-based DSM on BNC content words
83,926 lemma types with f > 10

> term-term matrix with 83,926 - 83,926 = 7 billion entries

» standard representation requires 56 GB of RAM (8-byte floats)
» only 22.1 million non-zero entries (= 0.32%)

v

> Example 2: Google Web 1T 5-grams (1 trillion words)

> more than 1 million word types with f > 2500
> term-term matrix with 1 trillion entries requires 8 TB RAM
> only 400 million non-zero entries (= 0.04%)

DSM Tutorial — Part 2
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LTSN  Sparse matrices

Working with sparse matrices

> Compressed format: each row index (or column index) stored
only once, followed by non-zero entries in this row (or column)

» convention: column-major matrix (data stored by columns)

» Specialised algorithms for sparse matrix algebra

> especially matrix multiplication, solving linear systems, etc.
> take care to avoid operations that create a dense matrix!

» R implementation: Matrix package
» essential for real-life distributional semantics

» wordspace provides additional support for sparse matrices
(vector distances, sparse SVD, ...)

» Other software: Matlab, Octave, Python + SciPy

DSM Tutorial — Part 2
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Building a DSM Example: a verb-object DSM
Outline

Building a DSM

Example: a verb-object DSM
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Constructing a DSM from a triplet table

» Additional information can be used for filtering (verb-object
relation), or aggregate frequencies (spoken + written BNC)

> tri <- subset(DSM_VerbNounTriples_BNC, rel == "obj")

» Construct DSM object from triplet input
» raw.freq=TRUE indicates raw co-occurrence frequencies
(rather than a pre-weighted DSM)
» constructor aggregates counts from duplicate entries
» marginal frequencies are automatically computed

> VObj <- dsm(target=tri$noun, feature=tri$verb,
score=tri$f, raw.freq=TRUE)
> VObj # inspect marginal frequencies (e.g. head(VObj$rows, 20))
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Triplet tables

> A sparse DSM matrix can be represented as a table of triplets
(target, feature, co-occurrence frequency)
» for syntactic co-occurrence and term-document matrices,
marginals can be computed from a complete triplet table
» for surface and textual co-occurrence, marginals have to be
provided in separate files (see 7read.dsm.triplet)

noun rel verb f mode
dog subj  bite 3 spoken
dog subj  bite 12 written
dog obj bite 4 written

dog obj stroke 3 written

» DSM_VerbNounTriples_BNC contains additional information

> syntactic relation between noun and verb
» written or spoken part of the British National Corpus

DSM Tutorial — Part 2 wordspace.collocations.de 73/91
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Exploring the DSM

> VObj <- dsm.score(VObj, score="MI", normalize=TRUE)

> nearest.neighbours(VObj, "dog") # angular distance

horse cat animal rabbit fish guy
73.9 75.9 76.2 77.0 77.2 78.5
cichlid kid bee creature

78.6 79.0 79.1 79.5

> nearest.neighbours(VObj, "dog", method="manhattan")
# NB: we used an incompatible Euclidean normalization!

> V0bj50 <- dsm.projection(VObj, n=50, method="svd")
> nearest.neighbours(VObj50, "dog")
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© Evert/Lapesa/Lenci/Baroni (CC-by-sa)



Practice Outline

» Code examples and further explanations: hands_on_day2.R
» How many different models can you build from
DSM_VerbNounTriples_BNC?
> apply different filters, scores, transformations and metrics
= explore nearest neighbours of selected words
» Build real-life DSMs from pre-compiled co-occurrence data

» http://wordspace.collocations.de/doku.php/course:material
> load pre-compiled matrix and apply different parameters
w compare nearest neighbours or semantic maps

» Learn how to import your own co-occurrence data
15 hands_on_day2_input_formats.R
» download example data sets to subdirectory data/ Appendix
Examples

» Explore matrix factorization techniques
15 hands_on_day2_matrix_factorization.R
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Appendix JE=ETIES LV Examples

Some well-known DSM examples Some well-known DSM examples

Latent Semantic Analysis (Landauer & Dumais 1997) Infomap NLP (Widdows 2004)
> term-context matrix with document context > term-term matrix with unstructured surface context
» weighting: log term frequency and term entropy > weighting: none
» distance measure: cosine > distance measure: cosine
» dimensionality reduction: SVD » dimensionality reduction: SVD

Hyperspace Analogue to Language (Lund & Burgess 1996) Random Indexing (Karlgren & Sahlgren 2001)
» term-term matrix with surface context » term-term matrix with unstructured surface context
» structured (left/right) and distance-weighted frequency counts > weighting: various methods
» distance measure: Minkowski metric (1 < p < 2) > distance measure: various methods
» dimensionality reduction: feature selection (high variance) » dimensionality reduction: random indexing (RI)
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Appendix Examples

Some well-known DSM examples

Dependency Vectors (Padé & Lapata 2007)

» term-term matrix with unstructured dependency context
» weighting: log-likelihood ratio
» distance measure: PPMI-weighted Dice (Lin 1998)

» dimensionality reduction: none

Distributional Memory (Baroni & Lenci 2010)

» term-term matrix with structured and unstructered
dependencies + knowledge patterns

» weighting: local-MI on type frequencies of link patterns
» distance measure: cosine

» dimensionality reduction: none
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Three famous examples
Outline

Appendix

Three famous examples
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Appendix Examples

and an unexpected application

Authorship attribution (Burrows 2002)

» Burrows's Delta method is very popular in modern literary
stylometry and authorship attribution (Evert et al. 2017)

document-term matrix with word forms as features
weighting: relative frequency of word form in document
feature selection: 200-5,000 most frequent words (mfw)

columns are standardized (1 = 0, 02 = 1) = z-scores

vVvyVvyYyvyy

clustering of documents based on various distance metrics
(or nearest-neighbour classifier for known authors)

v

dimensionality reduction: none

v

main result: angle/cosine > Manhattan > Euclidean
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Latent Semantic Analysis (Landauer & Dumais 1997)

» Corpus: 30,473 articles from Grolier's Academic American
Encyclopedia (4.6 million words in total)

= articles were limited to first 2,000 characters
» Word-article frequency matrix for 60,768 words
» row vector shows frequency of word in each article

» Logarithmic frequencies scaled by word entropy

> Reduced to 300 dim. by singular value decomposition (SVD)
» borrowed from LSI (Dumais et al. 1988)
= central claim: SVD reveals latent semantic features,
not just a data reduction technique
> Evaluated on TOEFL synonym test (80 items)
» LSA model achieved 64.4% correct answers
> also simulation of learning rate based on TOEFL results

82 /91 DSM Tutorial — Part 2
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Word Space (Schiitze 1992, 1993, 1998)

» Corpus: = 60 million words of news messages
» from the New York Times News Service
» Word-word co-occurrence matrix

» 20,000 target words & 2,000 context words as features

> row vector records how often each context word occurs close
to the target word (co-occurrence)

» co-occurrence window: left/right 50 words (Schiitze 1998)
or = 1000 characters (Schiitze 1992)

» Rows weighted by inverse document frequency (tf.idf)

v

Context vector = centroid of word vectors (bag-of-words)
= goal: determine “meaning” of a context
» Reduced to 100 SVD dimensions (mainly for efficiency)

» Evaluated on unsupervised word sense induction by clustering
of context vectors (for an ambiguous word)

» induced word senses improve information retrieval performance
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HAL (Lund & Burgess 1996)

[
oyster
® eare ® mouse
eye
hande face arm
.
[ * tooth
foor head
® turtle

Figure 2. Multidimensional scalirg of co-occurrence vectors.
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HAL (Lund & Burgess 1996)

» HAL = Hyperspace Analogue to Language

» Corpus: 160 million words from newsgroup postings
» Word-word co-occurrence matrix

» same 70,000 words used as targets and features

» co-occurrence window of 1 — 10 words
> Separate counts for left and right co-occurrence

> i.e. the context is structured

» In later work, co-occurrences are weighted by (inverse)
distance (Li et al. 2000)

» but no dimensionality reduction

» Applications include construction of semantic vocabulary
maps by multidimensional scaling to 2 dimensions
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