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Matrix algebra Roll your own DSM

Matrices and vectors
I k × n matrix M ∈ Rk×n is a rectangular array of real numbers

M =

m11 · · · m1n
...

...
mk1 · · · mkn


I Each row mi ∈ Rn is an n-dimensional vector

mi = (mi1,mi2, . . . ,min)

I Similarly, each column is a k-dimensional vector ∈ Rk

> options(digits=3)
> M <- DSM_TermTerm$M
> M[2, ] # row vector m2 for ‘‘dog’’
> M[, 5] # column vector for ‘‘important’’
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Matrix algebra Roll your own DSM

Matrices and vectors
I Vector x ∈ Rn as single-row or single-column matrix

I x = xTT = n × 1 matrix (“vertical”)
I xT = 1× n matrix (“horizontal”)
I transposition operator ·T swaps rows & columns of matrix

I We need vectors r ∈ Rk and c ∈ Rn of marginal frequencies
I Notation for cell ij of co-occurrence matrix:

I mij = O . . . observed co-occurrence frequency
I ri = R . . . row marginal (target)
I cj = C . . . column marginal (feature)
I N . . . sample size

> r <- DSM_TermTerm$rows$f
> c <- DSM_TermTerm$cols$f
> N <- DSM_TermTerm$globals$N
> t(r) # ‘‘horizontal’’ vector
> t(t(r)) # ‘‘vertical’’ vector
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Matrix algebra Roll your own DSM

Scalar operations

I Scalar operations perform the same transformation on each
element of a vector or matrix, e.g.

I add / subtract fixed shift µ ∈ R
I multiply / divide by fixed factor σ ∈ R
I apply function (log,

√
·, . . .) to each element

I Allows efficient processing of large sets of values

I Element-wise binary operators on matching vectors / matrices
I x + y = vector addition
I x� y = element-wise multiplication (Hadamard product)

> log(M + 1) # discounted log frequency weighting
> (M["cause", ] + M["effect", ]) / 2 # centroid vector
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Matrix algebra Roll your own DSM

The outer product
I Compute matrix E ∈ Rk×n of expected frequencies

eij = ricj
N

i.e. r[i] * c[j] for each cell ij

I This is the outer product of r and c
r1
...
rk



· c1 c2 · · · cn
[ ]

=
r1c1 r1c2 · · · r1cn
...

...
...

rkc1 rkc2 · · · rkcn




I The inner product of x, y ∈ Rn is the sum x1y1 + . . .+ xnyn

> outer(r, c) / N
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Matrix algebra Matrix multiplication

Matrix multiplication

 aij
 =

bi1 · · · bin
 ·


c1j
...
...

cnj


A = B · C

(k ×m) (k × n) (n ×m)

I B and C must be conformable (in dimension n)
I Element aij is the inner product of the i-th row of B and the

j-th column of C

aij = bi1c1j + . . .+ bincnj =
n∑

t=1
bitctj
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Matrix algebra Matrix multiplication

Some properties of matrix multiplication

Associativity: A(BC) = (AB)C =: ABC
Distributivity: A(B + B′) = AB + AB′

(A + A′)B = AB + A′B
Scalar multiplication: (λA)B = A(λB) = λ(AB) =: λAB

I Not commutative in general: AB 6= BA

I The k-dimensional square-diagonal identity matrix

Ik :=

1 . . .
1

 with Ik · A = A · In = A

is the neutral element of matrix multiplication
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Matrix algebra Matrix multiplication

Transposition and multiplication

I The transpose AT of a matrix A swaps rows and columns:a1 b1
a2 b2
a3 b3


T

=
[
a1 a2 a3
b1 b2 b3

]

I Properties of the transpose:
I (A + B)T = AT + BT

I (λA)T = λ(AT ) =: λAT

I (A · B)T = BT · AT [note the different order of A and B!]
I IT = I

I A is called symmetric iff AT = A
I symmetric matrices have many special properties that will

become important later (e.g. eigenvalues)
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Matrix algebra Matrix multiplication

The outer product as matrix multiplication
I The outer product is a special case of matrix multiplication

E = 1
N
(
r · cT )

I The other special case is the inner product

xT y =
n∑

i=1
xiyi

I NB: x · x and xT · xT are not conformable

# three ways to compute the matrix of expected frequencies
> E <- outer(r, c) / N
> E <- (r %*% t(c)) / N
> E <- tcrossprod(r, c) / N
> E
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Matrix algebra Association scores & normalization
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Matrix algebra Association scores & normalization

Computing association scores

I Association scores = element-wise combination of M and E,
e.g. for (pointwise) Mutual Information

S = log2
(
M� E

)
I � = element-wise division similar to Hadamard product �

I For sparse AMs such as PPMI, we need to compute
max {sij , 0} for each element of the scored matrix S

> log2(M / E)
> S <- pmax(log2(M / E), 0) # not max() !
> S
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Matrix algebra Association scores & normalization

Normalizing vectors

I Compute Euclidean norm of vector x ∈ Rn:

‖x‖2 =
√

x2
1 + . . .+ x2

n

I Normalized vector ‖x0‖2 = 1 by scalar multiplication:

x0 = 1
‖x‖2

x

> x <- S[2, ]
> b <- sqrt(sum(x ^ 2)) # Euclidean norm of x
> x0 <- x / b # normalized vector
> sqrt(sum(x0 ^ 2))
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Matrix algebra Association scores & normalization

Normalizing matrix rows

I Compute vector b ∈ Rk of norms of row vectors of S
I Can you find an elegant way to multiply each row of S with

the corresponding normalization factor b−1i ?

I Multiplication with diagonal matrix Db
−1

S0 = Db
−1 · S

S0 =


b−11

. . .
b−1k

 ·
s11 · · · s1n

...
...

sk1 · · · skn


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Matrix algebra Association scores & normalization

Normalizing matrix rows

I Compute vector b ∈ Rk of norms of row vectors of S
I Can you find an elegant way to multiply each row of S with

the corresponding normalization factor b−1i ?
I Multiplication with diagonal matrix Db

−1

S0 = Db
−1 · S

> b <- sqrt(rowSums(S^2))
> b <- rowNorms(S, method="euclidean") # more efficient

> S0 <- diag(1 / b) %*% S
> S0 <- scaleMargins(S, rows=(1 / b)) # much more efficient

> S0 <- normalize.rows(S, method="euclidean") # the easy way
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Geometry Metrics and norms
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Geometry Metrics and norms

Metric: a measure of distance

I A metric is a general measure of the distance d (u, v)
between points u and v, which satisfies the following axioms:

I d (u, v) = d (v,u)
I d (u, v) > 0 for u 6= v
I d (u,u) = 0
I d (u,w) ≤ d (u, v) + d (v,w) (triangle inequality)

I Metrics form a very broad class of distance measures, some of
which do not fit in well with our geometric intuitions

I Useful: family of Minkowski p-metrics

dp (u, v) :=
(
|u1 − v1|p + · · ·+ |un − vn|p

)1/p p ≥ 1
dp (u, v) := |u1 − v1|p + · · ·+ |un − vn|p 0 ≤ p < 1
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Geometry Metrics and norms

Norm: a measure of length

I A general norm ‖u‖ for the length of a vector u must satisfy
the following axioms:

I ‖u‖ > 0 for u 6= 0
I ‖λu‖ = |λ| · ‖u‖ (homogeneity)
I ‖u + v‖ ≤ ‖u‖ + ‖v‖ (triangle inequality)

I Every norm induces a metric

d (u, v) := ‖u− v‖

with two desirable properties
I translation-invariant: d (u + x, v + x) = d (u, v)
I scale-invariant: d (λu, λv) = |λ| · d (u, v)

I dp (u, v) is induced by the Minkowski norm for p ≥ 1:

‖u‖p :=
(
|u1|p + · · ·+ |un|p

)1/p
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Geometry Metrics and norms

Norm: a measure of length
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Unit circles for different p−norms

p = ∞
p = 5
p = 2
p = 1
p = 1 2

I Visualisation of norms in R2

by plotting unit circle, i.e.
points u with ‖u‖ = 1

I Here: p-norms ‖·‖p for
different values of p

I Triangle inequality ⇐⇒
unit circle is convex

I This shows that p-norms
with p < 1 would violate the
triangle inequality

+ Consequence for DSM: p � 2 sensitive to small differences in
many coordinates, p � 2 to larger differences in few coord.
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Geometry Metrics and norms

Norm: a measure of length

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Unit circles for different p−norms

p = ∞
p = 5
p = 2
p = 1
p = 1 2

I Visualisation of norms in R2

by plotting unit circle, i.e.
points u with ‖u‖ = 1

I Here: p-norms ‖·‖p for
different values of p

I Triangle inequality ⇐⇒
unit circle is convex

I This shows that p-norms
with p < 1 would violate the
triangle inequality

+ Consequence for DSM: p � 2 sensitive to small differences in
many coordinates, p � 2 to larger differences in few coord.

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial – Part 4 wordspace.collocations.de 21 / 39



Geometry Angles and orthogonality
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Geometry Angles and orthogonality

Euclidean norm & inner product

I The Euclidean norm ‖u‖2 =
√

uT u is special because it can
be derived from the inner product:

xT y = x1y1 + · · ·+ xnyn

I The inner product is a positive definite and symmetric bilinear
form with an important geometric interpretation:

cosφ = uT v
‖u‖2 · ‖v‖2

for the angle φ between vectors u, v ∈ Rn

I the value cosφ is known as the cosine similarity measure
I In particular, u and v are orthogonal iff uT v = 0
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Geometry Angles and orthogonality

Cosine similarity in R

I Cosine similarities can be computed very efficiently if vectors
are pre-normalized, so that ‖u‖2 = ‖v‖2 = 1

+ just need all inner products mT
i mj between row vectors of M

M ·MT =


· · · m1 · · ·
· · · m2 · · ·

· · · mk · · ·

 ·


...
...

...
m1 m2 mk
...

...
...



å
(
M ·MT )

ij = mT
i mj

# cosine similarities for row-normalized matrix:
> sim <- tcrossprod(S0)
> angles <- acos(pmin(sim, 1)) * (180 / pi)
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Geometry Angles and orthogonality

Euclidean distance or cosine similarity?

I We can now prove that Euclidean distance and cosine
similarity are equivalent: if vectors are normalised
(‖u‖2 = ‖v‖2 = 1), both lead to the same neighbour ranking

d2 (u, v) =
√
‖u− v‖2 =

√
(u− v)T (u− v)

=
√

uT u + vT v− 2uT v

=
√
‖u‖2 + ‖v‖2 − 2uT v

=
√
2− 2 cosφ

+ d2 (u, v) is a monotonically increasing function of φ
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Dimensionality reduction Orthogonal projection
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Dimensionality reduction Orthogonal projection

Linear subspace & basis

I A linear subspace B ⊆ Rn of rank r ≤ n is spanned by a set
of r linearly independent basis vectors

B = {b1, . . . ,br}

I Every point u in the subspace is a unique linear combination
of the basis vectors

u = x1b1 + . . .+ xr br

with coordinate vector x ∈ Rr

I Basis matrix V with column vectors bi :

u = Vx

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial – Part 4 wordspace.collocations.de 27 / 39



Dimensionality reduction Orthogonal projection

Linear subspace & basis

I A linear subspace B ⊆ Rn of rank r ≤ n is spanned by a set
of r linearly independent basis vectors

B = {b1, . . . ,br}

I Every point u in the subspace is a unique linear combination
of the basis vectors

u = x1b1 + . . .+ xr br

with coordinate vector x ∈ Rr

I Basis matrix V with column vectors bi :

u = Vx

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial – Part 4 wordspace.collocations.de 27 / 39



Dimensionality reduction Orthogonal projection

Linear subspace & basis

I A linear subspace B ⊆ Rn of rank r ≤ n is spanned by a set
of r linearly independent basis vectors

B = {b1, . . . ,br}

I Every point u in the subspace is a unique linear combination
of the basis vectors

u = x1b1 + . . .+ xr br

with coordinate vector x ∈ Rr

I Basis matrix V with column vectors bi :

u = Vx

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial – Part 4 wordspace.collocations.de 27 / 39



Dimensionality reduction Orthogonal projection

Orthonormal basis

I Particularly convenient with orthonormal basis:

‖bi‖2 = 1
bT

i bj = 0 for i 6= j

I Corresponding basis matrix V is (column)-orthogonal

VT V = Ir
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Dimensionality reduction Orthogonal projection

The mathematics of projections

I 1-d subspace spanned by
basis vector ‖b‖2 = 1

I For any point u, we have

cosϕ = bT u
‖b‖2 · ‖u‖2

I Trigonometry: coordinate
of point on the line is
x = ‖u‖2 · cosϕ = bT u

.

u

kbk2 = 1

'

u0 =
u

kuk2

Pu = b(bTu)

x

I The projected point in original space is then given by

b · x = b(bT u) = (bbT )u = Pu

where P is a projection matrix of rank 1
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Dimensionality reduction Orthogonal projection

The mathematics of projections

I For an orthogonal basis matrix V with columns b1, . . . ,br , the
projection into the rank-r subspace B is given by

Pu =
( r∑

i=1
bbT

)
u = VVT u

and its subspace coordinates are x = Vu

I Projection can be seen as decomposition into the projected
vector and its orthogonal complement

u = Pu + (u− Pu) = Pu + (I− P)u = Pu + Qu

I Because of orthogonality, we have

‖u‖2 = ‖Pu‖2 + ‖Qu‖2
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Dimensionality reduction Orthogonal projection

The mathematics of projections

I Decomposition also applies to squared Euclidean distances:

‖u− v‖2 = ‖Pu− Pv‖2 + ‖Qu−Qv‖2

I ‖Qu‖2 as measure for “loss” resulting from projection:

‖Qu‖2
‖u‖2 = 1− ‖Pu‖2

‖u‖2 = 1− R2

where R2 is the proportion of vector length “preserved” by P,
similar to the explained variance R2 in linear regression
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Dimensionality reduction Orthogonal projection

Optimal projections and subspaces

I Optimal subspace maximises R2 across a data set M, which is
now specified in terms of row vectors mT

i :

xT
i = mT

i V mT
i P = mT

i VVT

X = MV MP = MVVT

I Our “faithfulness” measure is thus given by

R2 =
∑k

i=1‖mT
i P‖2∑k

i=1‖mT
i ‖2

= ‖MP‖2F
‖M‖2F

with the (squared) Frobenius norm

‖M‖2F =
∑

ij
(mij)2 =

k∑
i=1
‖mi‖2
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Dimensionality reduction Orthogonal projection

Optimal projections and subspaces

I For a centered data set with
∑

i mi = 0, the Frobenius norm
corresponds to the average (squared) distance between points

∑k
i , j=1‖mi −mj‖2

=
∑k

i , j=1(mi −mj)T (mi −mj)
=
∑k

i , j=1
(
‖mi‖2 + ‖mj‖2 − 2mT

i mj
)

=
∑k

j=1‖M‖2F +
∑k

i=1‖M‖2F − 2
∑k

i=1 mT
i
(∑k

j=1 mj︸ ︷︷ ︸
0

)
= 2k · ‖M‖2F

I “loss” of distances:
∑k

i , j=1‖(mi −mj)Q‖2 = 2k · ‖MQ‖2F
+ R2 is a measure of how well distances are preserved
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Dimensionality reduction PCA & SVD
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Dimensionality reduction PCA & SVD

Singular value decomposition
I Fundamental result of matrix algebra: singular value

decomposition (SVD) factorises any matrix M into

M = UΣVT

where U and V are orthogonal and Σ is a diagonal matrix of
singular values σ1 ≥ σ2 ≥ · · · ≥ σm > 0



n

k M


=



m

k U


·

σ1 m
m . . .

Σ σm

·


n

m VT


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Dimensionality reduction PCA & SVD

Singular value decomposition

I m ≤ min{k, n} is the inherent dimensionality (rank) of M
I Columns ai of U are called left singular vectors,

columns bi of V (= rows of VT ) are right singular vectors
I Recall the “outer product” view of matrix multiplication:

UVT =
m∑

i=1
aibT

i

I Hence the SVD corresponds to a sum of rank-1 components

M = UΣVT =
m∑

i=1
σiaibT

i
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Dimensionality reduction PCA & SVD

Singular value decomposition

I Key property of SVD: the first r components give the best
rank-r approximation to M with respect to the Frobenius
norm, i.e. they minimize the loss

‖Ur Σr VT
r −M‖2F = ‖Mr −M‖2F

+ Truncated SVD
I Ur , Vr = first r columns of U, V
I Σr = diagonal matrix of first r singular values

I It can be shown that

‖M‖2F =
m∑

i=1
σ2i and ‖Mr‖2F =

r∑
i=1

σ2i
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Dimensionality reduction PCA & SVD

SVD dimensionality reduction

I Columns of Vr form an orthogonormal basis of the optimal
rank-r subspace because

MP = MVr VT
r = UΣVT Vr︸ ︷︷ ︸

=Ir

VT
r = Ur Σr VT

r = Mr

I Dimensionality reduction uses the subspace coordinates

MVr = Ur Σr

I If M is centered, this also gives the best possible preservation
of pairwise distances Ü principal component analysis (PCA)

+ but centering is usally omitted in order to preserve sparseness,
so SVD captures vector lengths rather than distances
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Dimensionality reduction PCA & SVD

Scaling SVD dimensions

I Singular values σi can be seen as weighting of the latent
dimensions, which determines their contribution to

‖MVr‖F = σ21 + . . .+ σ2r

I Weighting can be adjusted by power scaling of the singular
values:

Ur Σp
r =


...

...
σp
1a1 · · · σp

r ar
...

...


I p = 1: normal SVD projection
I p = 0: dimension weights equalized
I p = 2: more weight given to first latent dimensions

I Other weighting schemes possible (e.g. skip first dimensions)
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