Distributional Semantic Models Part 4: Elements of matrix algebra

$\label{eq:stefan} Stefan \ Evert^1$ with Alessandro Lenci^2, Marco Baroni^3 and Gabriella Lapesa^4

¹Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany ²University of Pisa, Italy ³University of Trento, Italy ⁴University of Stuttgart, Germany

http://wordspace.collocations.de/doku.php/course:start

Copyright © 2009–2017 Evert, Lenci, Baroni & Lapesa | Licensed under CC-by-sa version 3.0

Outline

Matrix algebra

Roll your own DSM Matrix multiplication Association scores & normalization

Geometry

Metrics and norms Angles and orthogonality

Dimensionality reduction

Orthogonal projection PCA & SVD

Outline

Matrix algebra

Roll your own DSM

Matrix multiplication Association scores & normalization

Geometry

Metrics and norms Angles and orthogonality

Dimensionality reduction

Orthogonal projection PCA & SVD

э

A B b A B b

< 1 k

Matrices and vectors

• $k \times n$ matrix $\mathbf{M} \in \mathbb{R}^{k \times n}$ is a rectangular array of real numbers

$$\mathbf{M} = \begin{bmatrix} m_{11} & \cdots & m_{1n} \\ \vdots & & \vdots \\ m_{k1} & \cdots & m_{kn} \end{bmatrix}$$

• Each row $\mathbf{m}_i \in \mathbb{R}^n$ is an *n*-dimensional vector

$$\mathbf{m}_i = (m_{i1}, m_{i2}, \ldots, m_{in})$$

Similarly, each column is a k-dimensional vector $\in \mathbb{R}^k$

- > options(digits=3)
- > M <- DSM_TermTerm\$M
- > M[2,] # row vector \mathbf{m}_2 for "dog"
- > M[, 5] # column vector for "important"

Matrices and vectors

- Vector $\mathbf{x} \in \mathbb{R}^n$ as single-row or single-column matrix
 - $\mathbf{x} = \mathbf{x}^{TT} = n \times 1$ matrix ("vertical")
 - $\mathbf{x}^T = 1 \times n$ matrix ("horizontal")
 - ▶ transposition operator ·^T swaps rows & columns of matrix

- > N <- DSM_TermTerm\$globals\$N
- > t(r) # "horizontal" vector
- > t(t(r)) # "vertical" vector

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

Matrices and vectors

- Vector $\mathbf{x} \in \mathbb{R}^n$ as single-row or single-column matrix
 - $\mathbf{x} = \mathbf{x}^{TT} = n \times 1$ matrix ("vertical")
 - $\mathbf{x}^T = 1 \times n$ matrix ("horizontal")
 - transposition operator \cdot^{T} swaps rows & columns of matrix
- We need vectors $\mathbf{r} \in \mathbb{R}^k$ and $\mathbf{c} \in \mathbb{R}^n$ of marginal frequencies
- Notation for cell ij of co-occurrence matrix:
 - $m_{ij} = O \dots$ observed co-occurrence frequency
 - $r_i = R \dots$ row marginal (target)
 - $c_j = C \dots$ column marginal (feature)
 - N . . . sample size
- > r <- DSM_TermTerm\$rows\$f</pre>
- > c <- DSM_TermTerm\$cols\$f</pre>
- > N <- DSM_TermTerm\$globals\$N
- > t(r) # "horizontal" vector
- > t(t(r)) # "vertical" vector

Scalar operations

- Scalar operations perform the same transformation on each element of a vector or matrix, e.g.
 - add / subtract fixed shift $\mu \in \mathbb{R}$
 - multiply / divide by fixed factor $\sigma \in \mathbb{R}$
 - apply function $(\log, \sqrt{\cdot}, \ldots)$ to each element
- Allows efficient processing of large sets of values

> log(M + 1) # discounted log frequency weighting
> (M["cause",] + M["effect",]) / 2 # centroid vector

< □ > < □ > < □ > < □ > < □ > < □ >

Scalar operations

- Scalar operations perform the same transformation on each element of a vector or matrix, e.g.
 - add / subtract fixed shift $\mu \in \mathbb{R}$
 - multiply / divide by fixed factor $\sigma \in \mathbb{R}$
 - apply function $(\log, \sqrt{\cdot}, \ldots)$ to each element
- Allows efficient processing of large sets of values
- Element-wise binary operators on matching vectors / matrices
 - x + y = vector addition
 - ▶ **x** ⊙ **y** = element-wise multiplication (Hadamard product)
- > log(M + 1) # discounted log frequency weighting
 > (M["cause",] + M["effect",]) / 2 # centroid vector

The outer product

• Compute matrix $\mathbf{E} \in \mathbb{R}^{k \times n}$ of expected frequencies

$$e_{ij} = rac{r_i c_j}{N}$$

i.e. r[i] * c[j] for each cell ij

> outer(r, c) / N

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

(日)

The outer product

• Compute matrix $\mathbf{E} \in \mathbb{R}^{k \times n}$ of expected frequencies

$$e_{ij} = rac{r_i c_j}{N}$$

i.e. r[i] * c[j] for each cell ij

This is the outer product of r and c

$$\begin{bmatrix} r_1 \\ \vdots \\ r_k \end{bmatrix} \cdot \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix} = \begin{bmatrix} r_1c_1 & r_1c_2 & \cdots & r_1c_n \\ \vdots & \vdots & & \vdots \\ r_kc_1 & r_kc_2 & \cdots & r_kc_n \end{bmatrix}$$

> outer(r, c) / N

< □ > < 同 > < 回 > < 回 >

The outer product

• Compute matrix $\mathbf{E} \in \mathbb{R}^{k \times n}$ of expected frequencies

$$e_{ij} = rac{r_i c_j}{N}$$

i.e. r[i] * c[j] for each cell ij

This is the outer product of r and c

$$\begin{bmatrix} r_1 \\ \vdots \\ r_k \end{bmatrix} \cdot \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix} = \begin{bmatrix} r_1c_1 & r_1c_2 & \cdots & r_1c_n \\ \vdots & \vdots & & \vdots \\ r_kc_1 & r_kc_2 & \cdots & r_kc_n \end{bmatrix}$$

• The inner product of $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is the sum $x_1y_1 + \ldots + x_ny_n$

> outer(r, c) / N

E 6 4 E 6

Outline

Matrix algebra

Roll your own DSM Matrix multiplication

Association scores & normalization

Geometry

Metrics and norms Angles and orthogonality

Dimensionality reduction

Orthogonal projection PCA & SVD

э

A B A A B A

< 1 k

- **B** and **C** must be **conformable** (in dimension *n*)
- Element a_{ij} is the inner product of the *i*-th row of **B** and the *j*-th column of **C**

$$a_{ij} = b_{i1}c_{1j} + \ldots + b_{in}c_{nj} = \sum_{t=1}^{n} b_{it}c_{tj}$$

- **B** and **C** must be **conformable** (in dimension *n*)
- Element a_{ij} is the inner product of the *i*-th row of **B** and the *j*-th column of **C**

$$a_{ij} = b_{i1}c_{1j} + \ldots + b_{in}c_{nj} = \sum_{t=1}^{n} b_{it}c_{tj}$$

- **B** and **C** must be **conformable** (in dimension *n*)
- Element a_{ij} is the inner product of the *i*-th row of **B** and the *j*-th column of **C**

$$a_{ij} = b_{i1}c_{1j} + \ldots + b_{in}c_{nj} = \sum_{t=1}^{n} b_{it}c_{tj}$$

Some properties of matrix multiplication

- Associativity: A(BC) = (AB)C =: ABCDistributivity: A(B + B') = AB + AB' (A + A')B = AB + A'BScalar multiplication: $(\lambda A)B = A(\lambda B) = \lambda(AB) =: \lambda AB$
- Not commutative in general: AB \u2274 BA

< □ > < 同 > < 回 > < 回 >

Some properties of matrix multiplication

- Associativity: A(BC) = (AB)C =: ABCDistributivity: A(B + B') = AB + AB' (A + A')B = AB + A'BScalar multiplication: $(\lambda A)B = A(\lambda B) = \lambda(AB) =: \lambda AB$
- Not commutative in general: $AB \neq BA$
- The k-dimensional square-diagonal identity matrix

$$\mathbf{I}_k := \begin{bmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{bmatrix} \quad \text{with} \quad \mathbf{I}_k \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{I}_n = \mathbf{A}$$

is the neutral element of matrix multiplication

Transposition and multiplication

• The transpose A^T of a matrix A swaps rows and columns:

$$\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{bmatrix}^T = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$

Transposition and multiplication

► The transpose **A**^T of a matrix **A** swaps rows and columns:

$$\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{bmatrix}^T = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$

Properties of the transpose:

►
$$(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$$

► $(\lambda \mathbf{A})^T = \lambda (\mathbf{A}^T) =: \lambda \mathbf{A}^T$
► $(\mathbf{A} \cdot \mathbf{B})^T = \mathbf{B}^T \cdot \mathbf{A}^T$ [note the different order of **A** and **B**!]
► $\mathbf{I}^T = \mathbf{I}$

Transposition and multiplication

• The transpose \mathbf{A}^{T} of a matrix \mathbf{A} swaps rows and columns:

$$\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{bmatrix}^T = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$

- Properties of the transpose:
 - $\bullet (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$ $(\lambda \mathbf{A})^T = \lambda (\mathbf{A}^T) =: \lambda \mathbf{A}^T$ • $(\mathbf{A} \cdot \mathbf{B})^T = \mathbf{B}^T \cdot \mathbf{A}^T$ [note the different order of **A** and **B**!] $\mathbf{P} \mathbf{I}^T = \mathbf{I}$
- A is called symmetric iff $A^T = A$
 - symmetric matrices have many special properties that will become important later (e.g. eigenvalues)

The outer product as matrix multiplication

The outer product is a special case of matrix multiplication

$$\mathbf{E} = \frac{1}{N} (\mathbf{r} \cdot \mathbf{c}^T)$$

The outer product as matrix multiplication

The outer product is a special case of matrix multiplication

$$\mathbf{E} = \frac{1}{N} (\mathbf{r} \cdot \mathbf{c}^T)$$

The other special case is the inner product

$$\mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i y_i$$

• NB: $\mathbf{x} \cdot \mathbf{x}$ and $\mathbf{x}^T \cdot \mathbf{x}^T$ are not conformable

three ways to compute the matrix of expected frequencies
> E <- outer(r, c) / N
> E <- (r %*% t(c)) / N
> E <- tcrossprod(r, c) / N
> E

Outline

Matrix algebra Roll your own DSM Matrix multiplication Association scores & normalization

Geometry

Metrics and norms Angles and orthogonality

Dimensionality reduction Orthogonal projection

PCA & SVD

э

A B A A B A

< A 1

Computing association scores

Association scores = element-wise combination of M and E, e.g. for (pointwise) Mutual Information

$$\mathbf{S} = \log_2(\mathbf{M} \oslash \mathbf{E})$$

 \blacktriangleright \oslash = element-wise division similar to Hadamard product \odot

4 2 5 4 2 5

Computing association scores

 Association scores = element-wise combination of M and E, e.g. for (pointwise) Mutual Information

$$\mathbf{S} = \log_2(\mathbf{M} \oslash \mathbf{E})$$

 \blacktriangleright \oslash = element-wise division similar to Hadamard product \odot

For sparse AMs such as PPMI, we need to compute max {s_{ij}, 0} for each element of the scored matrix S

4 1 1 4 1 1 1

Normalizing vectors

• Compute Euclidean norm of vector $\mathbf{x} \in \mathbb{R}^n$:

$$\|\mathbf{x}\|_2 = \sqrt{x_1^2 + \ldots + x_n^2}$$

3

Normalizing vectors

• Compute Euclidean norm of vector $\mathbf{x} \in \mathbb{R}^n$:

$$\|\mathbf{x}\|_2 = \sqrt{x_1^2 + \ldots + x_n^2}$$

• Normalized vector $\|\mathbf{x}_0\|_2 = 1$ by scalar multiplication:

$$\mathbf{x}_0 = \frac{1}{\|\mathbf{x}\|_2} \mathbf{x}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Normalizing matrix rows

- Compute vector $\mathbf{b} \in \mathbb{R}^k$ of norms of row vectors of \mathbf{S}
- Can you find an elegant way to multiply each row of S with the corresponding normalization factor b_i⁻¹?

Normalizing matrix rows

- Compute vector $\mathbf{b} \in \mathbb{R}^k$ of norms of row vectors of \mathbf{S}
- Can you find an elegant way to multiply each row of S with the corresponding normalization factor b_i⁻¹?
- Multiplication with diagonal matrix D_b⁻¹

$$\mathbf{S}_0 = \mathbf{D_b}^{-1} \cdot \mathbf{S}$$

$$\mathbf{S}_0 = \begin{bmatrix} b_1^{-1} & & \\ & \ddots & \\ & & b_k^{-1} \end{bmatrix} \cdot \begin{bmatrix} s_{11} & \cdots & s_{1n} \\ \vdots & & \vdots \\ s_{k1} & \cdots & s_{kn} \end{bmatrix}$$

Normalizing matrix rows

- Compute vector $\mathbf{b} \in \mathbb{R}^k$ of norms of row vectors of \mathbf{S}
- Can you find an elegant way to multiply each row of S with the corresponding normalization factor b_i⁻¹?
- Multiplication with diagonal matrix D_b⁻¹

$$\bm{S}_0 = \bm{D_b}^{-1} \cdot \bm{S}$$

Metrics and norms

Outline

Matrix multiplication Association scores & normalization

Geometry

Metrics and norms

PCA & SVD

A B A A B A

< A 1

Metric: a measure of distance

- A metric is a general measure of the distance d (u, v) between points u and v, which satisfies the following axioms:
 - $\flat \ d(\mathbf{u},\mathbf{v}) = d(\mathbf{v},\mathbf{u})$
 - $d(\mathbf{u}, \mathbf{v}) > 0$ for $\mathbf{u} \neq \mathbf{v}$
 - $\bullet \ d(\mathbf{u},\mathbf{u})=0$
 - ► $d(\mathbf{u}, \mathbf{w}) \leq d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w})$ (triangle inequality)
- Metrics form a very broad class of distance measures, some of which do not fit in well with our geometric intuitions

Metric: a measure of distance

- A metric is a general measure of the distance d (u, v) between points u and v, which satisfies the following axioms:
 - $\flat \ d(\mathbf{u},\mathbf{v}) = d(\mathbf{v},\mathbf{u})$
 - $d(\mathbf{u}, \mathbf{v}) > 0$ for $\mathbf{u} \neq \mathbf{v}$
 - $\bullet \ d(\mathbf{u},\mathbf{u})=0$
 - ► $d(\mathbf{u}, \mathbf{w}) \leq d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w})$ (triangle inequality)
- Metrics form a very broad class of distance measures, some of which do not fit in well with our geometric intuitions
- Useful: family of Minkowski p-metrics

$$\begin{aligned} d_{p}\left(\mathbf{u},\mathbf{v}\right) &:= \left(|u_{1}-v_{1}|^{p}+\cdots+|u_{n}-v_{n}|^{p}\right)^{1/p} & p \geq 1 \\ d_{p}\left(\mathbf{u},\mathbf{v}\right) &:= |u_{1}-v_{1}|^{p}+\cdots+|u_{n}-v_{n}|^{p} & 0 \leq p < 1 \end{aligned}$$

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

Norm: a measure of length

- ► A general norm ||u|| for the length of a vector u must satisfy the following axioms:
 - $\blacktriangleright \ \| \textbf{u} \| > 0 \text{ for } \textbf{u} \neq \textbf{0}$
 - $\|\lambda \mathbf{u}\| = |\lambda| \cdot \|\mathbf{u}\|$ (homogeneity)
 - $\blacktriangleright \|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\| \text{ (triangle inequality)}$

4 1 1 1 4 1 1 1

Norm: a measure of length

- ► A general norm ||u|| for the length of a vector u must satisfy the following axioms:
 - $\blacktriangleright \ \| \mathbf{u} \| > 0 \text{ for } \mathbf{u} \neq \mathbf{0}$
 - $\|\lambda \mathbf{u}\| = |\lambda| \cdot \|\mathbf{u}\|$ (homogeneity)
 - $\blacktriangleright \|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\| \text{ (triangle inequality)}$
- Every norm induces a metric

$$d\left(\mathbf{u},\mathbf{v}\right):=\left\|\mathbf{u}-\mathbf{v}\right\|$$

with two desirable properties

- translation-invariant: $d(\mathbf{u} + \mathbf{x}, \mathbf{v} + \mathbf{x}) = d(\mathbf{u}, \mathbf{v})$
- scale-invariant: $d(\lambda \mathbf{u}, \lambda \mathbf{v}) = |\lambda| \cdot d(\mathbf{u}, \mathbf{v})$

Norm: a measure of length

- ► A general norm ||u|| for the length of a vector u must satisfy the following axioms:
 - $\blacktriangleright \ \| \textbf{u} \| > 0 \text{ for } \textbf{u} \neq \textbf{0}$
 - $\|\lambda \mathbf{u}\| = |\lambda| \cdot \|\mathbf{u}\|$ (homogeneity)
 - ▶ $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ (triangle inequality)
- Every norm induces a metric

$$d(\mathbf{u},\mathbf{v}) := \|\mathbf{u} - \mathbf{v}\|$$

with two desirable properties

- translation-invariant: $d(\mathbf{u} + \mathbf{x}, \mathbf{v} + \mathbf{x}) = d(\mathbf{u}, \mathbf{v})$
- scale-invariant: $d(\lambda \mathbf{u}, \lambda \mathbf{v}) = |\lambda| \cdot d(\mathbf{u}, \mathbf{v})$

► $d_p(\mathbf{u}, \mathbf{v})$ is induced by the Minkowski norm for $p \ge 1$:

$$\|\mathbf{u}\|_{p} := (|u_{1}|^{p} + \cdots + |u_{n}|^{p})^{1/p}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …
Norm: a measure of length

- ► Visualisation of norms in ℝ² by plotting unit circle, i.e. points u with ||u|| = 1
- ► Here: *p*-norms ||·||_p for different values of *p*

Norm: a measure of length

- ► Visualisation of norms in ℝ² by plotting unit circle, i.e. points u with ||u|| = 1
- Here: p-norms ||·||_p for different values of p
- Triangle inequality unit circle is convex
- This shows that *p*-norms with *p* < 1 would violate the triangle inequality

Norm: a measure of length

- ► Visualisation of norms in ℝ² by plotting unit circle, i.e. points u with ||u|| = 1
- Here: p-norms ||·||_p for different values of p
- Triangle inequality unit circle is convex
- This shows that *p*-norms with *p* < 1 would violate the triangle inequality

Consequence for DSM: $p \ll 2$ sensitive to small differences in many coordinates, $p \gg 2$ to larger differences in few coord.

Outline

Matrix algebra

Roll your own DSM Matrix multiplication Association scores & normalization

Geometry

Metrics and norms Angles and orthogonality

Dimensionality reduction

Orthogonal projection PCA & SVD

э

A B A A B A

Euclidean norm & inner product

► The Euclidean norm ||u||₂ = √u^Tu is special because it can be derived from the inner product:

$$\mathbf{x}^T \mathbf{y} = x_1 y_1 + \dots + x_n y_n$$

Euclidean norm & inner product

► The Euclidean norm ||u||₂ = √u^Tu is special because it can be derived from the inner product:

$$\mathbf{x}^T \mathbf{y} = x_1 y_1 + \dots + x_n y_n$$

The inner product is a positive definite and symmetric bilinear form with an important geometric interpretation:

$$\cos\phi = \frac{\mathbf{u}^T \mathbf{v}}{\|\mathbf{u}\|_2 \cdot \|\mathbf{v}\|_2}$$

for the **angle** ϕ between vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$

• the value $\cos \phi$ is known as the **cosine similarity** measure

Euclidean norm & inner product

► The Euclidean norm ||u||₂ = √u^Tu is special because it can be derived from the inner product:

$$\mathbf{x}^T \mathbf{y} = x_1 y_1 + \dots + x_n y_n$$

The inner product is a positive definite and symmetric bilinear form with an important geometric interpretation:

$$\cos\phi = \frac{\mathbf{u}^T \mathbf{v}}{\|\mathbf{u}\|_2 \cdot \|\mathbf{v}\|_2}$$

for the angle ϕ between vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$

- the value $\cos \phi$ is known as the **cosine similarity** measure
- ► In particular, **u** and **v** are **orthogonal** iff $\mathbf{u}^T \mathbf{v} = 0$

Cosine similarity in R

- ► Cosine similarities can be computed very efficiently if vectors are pre-normalized, so that ||u||₂ = ||v||₂ = 1
- is just need all inner products $\mathbf{m}_i^T \mathbf{m}_i$ between row vectors of **M**

Cosine similarity in R

- ➤ Cosine similarities can be computed very efficiently if vectors are pre-normalized, so that ||u||₂ = ||v||₂ = 1
- is just need all inner products $\mathbf{m}_i^T \mathbf{m}_j$ between row vectors of \mathbf{M}

$$\mathbf{M} \cdot \mathbf{M}^{T} = \begin{bmatrix} \cdots & \mathbf{m}_{1} & \cdots \\ \cdots & \mathbf{m}_{2} & \cdots \\ & & & \\ \cdots & \mathbf{m}_{k} & \cdots \end{bmatrix} \cdot \begin{bmatrix} \vdots & \vdots & \vdots \\ \mathbf{m}_{1} & \mathbf{m}_{2} & & \mathbf{m}_{k} \\ \vdots & \vdots & \vdots \end{bmatrix}$$
$$\stackrel{\bullet}{\longrightarrow} \quad \left(\mathbf{M} \cdot \mathbf{M}^{T}\right)_{ij} = \mathbf{m}_{i}^{T} \mathbf{m}_{j}$$

cosine similarities for row-normalized matrix:

- > sim <- tcrossprod(S0)</pre>
- > angles <- acos(pmin(sim, 1)) * (180 / pi)

Euclidean distance or cosine similarity?

► We can now prove that Euclidean distance and cosine similarity are equivalent: if vectors are normalised (||u||₂ = ||v||₂ = 1), both lead to the same neighbour ranking

Euclidean distance or cosine similarity?

► We can now prove that Euclidean distance and cosine similarity are equivalent: if vectors are normalised (||**u**||₂ = ||**v**||₂ = 1), both lead to the same neighbour ranking

$$d_2(\mathbf{u}, \mathbf{v}) = \sqrt{\|\mathbf{u} - \mathbf{v}\|_2} = \sqrt{(\mathbf{u} - \mathbf{v})^T (\mathbf{u} - \mathbf{v})}$$
$$= \sqrt{\mathbf{u}^T \mathbf{u} + \mathbf{v}^T \mathbf{v} - 2 \mathbf{u}^T \mathbf{v}}$$
$$= \sqrt{\|\mathbf{u}\|_2 + \|\mathbf{v}\|_2 - 2 \mathbf{u}^T \mathbf{v}}$$
$$= \sqrt{2 - 2 \cos \phi}$$

 $\bowtie d_2(\mathbf{u}, \mathbf{v})$ is a monotonically increasing function of ϕ

Outline

Matrix algebra

Roll your own DSM Matrix multiplication Association scores & normalization

Geometry

Metrics and norms Angles and orthogonality

Dimensionality reduction Orthogonal projection PCA & SVD

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Linear subspace & basis

A linear subspace B ⊆ ℝⁿ of rank r ≤ n is spanned by a set of r linearly independent basis vectors

$$B = \{\mathbf{b}_1, \ldots, \mathbf{b}_r\}$$

4 1 1 4 1 1 1

Linear subspace & basis

A linear subspace B ⊆ ℝⁿ of rank r ≤ n is spanned by a set of r linearly independent basis vectors

$$B = \{\mathbf{b}_1, \ldots, \mathbf{b}_r\}$$

Every point u in the subspace is a unique linear combination of the basis vectors

$$\mathbf{u} = x_1 \mathbf{b}_1 + \ldots + x_r \mathbf{b}_r$$

with coordinate vector $\mathbf{x} \in \mathbb{R}^r$

Linear subspace & basis

A linear subspace B ⊆ ℝⁿ of rank r ≤ n is spanned by a set of r linearly independent basis vectors

$$B = \{\mathbf{b}_1, \ldots, \mathbf{b}_r\}$$

Every point u in the subspace is a unique linear combination of the basis vectors

$$\mathbf{u} = x_1 \mathbf{b}_1 + \ldots + x_r \mathbf{b}_r$$

with coordinate vector $\mathbf{x} \in \mathbb{R}^r$

Basis matrix V with column vectors b_i:

$$\mathbf{u} = \mathbf{V}\mathbf{x}$$

Orthonormal basis

Particularly convenient with orthonormal basis:

$$\begin{aligned} \|\mathbf{b}_i\|_2 &= 1\\ \mathbf{b}_i^T \mathbf{b}_j &= 0 \end{aligned} \qquad \text{for } i \neq j \end{aligned}$$

Corresponding basis matrix V is (column)-orthogonal

 $\mathbf{V}^T\mathbf{V}=\mathbf{I}_r$

4 1 1 1 4 1 1 1

- ▶ 1-d subspace spanned by basis vector ||**b**||₂ = 1
- ► For any point **u**, we have

$$\cos\varphi = \frac{\mathbf{b}^T \mathbf{u}}{\|\mathbf{b}\|_2 \cdot \|\mathbf{u}\|_2}$$

- ▶ 1-d subspace spanned by basis vector ||**b**||₂ = 1
- ► For any point **u**, we have

$$\cos \varphi = \frac{\mathbf{b}^T \mathbf{u}}{\|\mathbf{b}\|_2 \cdot \|\mathbf{u}\|_2}$$

► Trigonometry: coordinate of point on the line is $x = \|\mathbf{u}\|_2 \cdot \cos \varphi = \mathbf{b}^T \mathbf{u}$

- ▶ 1-d subspace spanned by basis vector ||**b**||₂ = 1
- ► For any point **u**, we have

$$\cos \varphi = \frac{\mathbf{b}^T \mathbf{u}}{\|\mathbf{b}\|_2 \cdot \|\mathbf{u}\|_2}$$

► Trigonometry: coordinate of point on the line is $x = \|\mathbf{u}\|_2 \cdot \cos \varphi = \mathbf{b}^T \mathbf{u}$

The projected point in original space is then given by

$$\mathbf{b} \cdot \mathbf{x} = \mathbf{b}(\mathbf{b}^T \mathbf{u}) = (\mathbf{b}\mathbf{b}^T)\mathbf{u} = \mathbf{P}\mathbf{u}$$

where **P** is a projection matrix of rank 1

▶ For an orthogonal basis matrix V with columns b₁,..., b_r, the projection into the rank-r subspace B is given by

$$\mathbf{P}\mathbf{u} = \left(\sum_{i=1}^{r} \mathbf{b}\mathbf{b}^{T}\right)\mathbf{u} = \mathbf{V}\mathbf{V}^{T}\mathbf{u}$$

and its subspace coordinates are $\mathbf{x} = \mathbf{V}\mathbf{u}$

For an orthogonal basis matrix V with columns b₁,..., b_r, the projection into the rank-r subspace B is given by

$$\mathbf{P}\mathbf{u} = \left(\sum_{i=1}^{r} \mathbf{b}\mathbf{b}^{T}\right)\mathbf{u} = \mathbf{V}\mathbf{V}^{T}\mathbf{u}$$

and its subspace coordinates are $\mathbf{x} = \mathbf{V}\mathbf{u}$

 Projection can be seen as decomposition into the projected vector and its orthogonal complement

$$\mathbf{u}=\mathbf{P}\mathbf{u}+(\mathbf{u}-\mathbf{P}\mathbf{u})=\mathbf{P}\mathbf{u}+(\mathbf{I}-\mathbf{P})\mathbf{u}=\mathbf{P}\mathbf{u}+\mathbf{Q}\mathbf{u}$$

▶ For an orthogonal basis matrix V with columns b₁,..., b_r, the projection into the rank-r subspace B is given by

$$\mathbf{P}\mathbf{u} = \left(\sum_{i=1}^{r} \mathbf{b}\mathbf{b}^{T}\right)\mathbf{u} = \mathbf{V}\mathbf{V}^{T}\mathbf{u}$$

and its subspace coordinates are $\mathbf{x}=\mathbf{V}\mathbf{u}$

 Projection can be seen as decomposition into the projected vector and its orthogonal complement

$$\mathbf{u} = \mathbf{P}\mathbf{u} + (\mathbf{u} - \mathbf{P}\mathbf{u}) = \mathbf{P}\mathbf{u} + (\mathbf{I} - \mathbf{P})\mathbf{u} = \mathbf{P}\mathbf{u} + \mathbf{Q}\mathbf{u}$$

Because of orthogonality, we have

$$\|\mathbf{u}\|^2 = \|\mathbf{P}\mathbf{u}\|^2 + \|\mathbf{Q}\mathbf{u}\|^2$$

Decomposition also applies to squared Euclidean distances:

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{P}\mathbf{u} - \mathbf{P}\mathbf{v}\|^2 + \|\mathbf{Q}\mathbf{u} - \mathbf{Q}\mathbf{v}\|^2$$

э

Decomposition also applies to squared Euclidean distances:

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{P}\mathbf{u} - \mathbf{P}\mathbf{v}\|^2 + \|\mathbf{Q}\mathbf{u} - \mathbf{Q}\mathbf{v}\|^2$$

• $\|\mathbf{Qu}\|^2$ as measure for "loss" resulting from projection:

$$\frac{\|\mathbf{Q}\mathbf{u}\|^2}{\|\mathbf{u}\|^2} = 1 - \frac{\|\mathbf{P}\mathbf{u}\|^2}{\|\mathbf{u}\|^2} = 1 - R^2$$

where R^2 is the proportion of vector length "preserved" by **P**, similar to the explained variance R^2 in linear regression

Optimal subspace maximises R² across a data set M, which is now specified in terms of row vectors m^T_i:

Optimal subspace maximises R² across a data set M, which is now specified in terms of row vectors m^T_i:

Our "faithfulness" measure is thus given by

$$R^{2} = \frac{\sum_{i=1}^{k} \|\mathbf{m}_{i}^{T}\mathbf{P}\|^{2}}{\sum_{i=1}^{k} \|\mathbf{m}_{i}^{T}\|^{2}} = \frac{\|\mathbf{M}\mathbf{P}\|_{F}^{2}}{\|\mathbf{M}\|_{F}^{2}}$$

with the (squared) Frobenius norm

$$\|\mathbf{M}\|_{F}^{2} = \sum_{ij} (m_{ij})^{2} = \sum_{i=1}^{k} \|\mathbf{m}_{i}\|^{2}$$

► For a centered data set with $\sum_{i} \mathbf{m}_{i} = \mathbf{0}$, the Frobenius norm corresponds to the average (squared) distance between points

$$\sum_{i,j=1}^{k} \|\mathbf{m}_i - \mathbf{m}_j\|^2$$

► For a centered data set with $\sum_{i} \mathbf{m}_{i} = \mathbf{0}$, the Frobenius norm corresponds to the average (squared) distance between points

$$\sum_{i,j=1}^{k} \|\mathbf{m}_{i} - \mathbf{m}_{j}\|^{2}$$

$$= \sum_{i,j=1}^{k} (\mathbf{m}_{i} - \mathbf{m}_{j})^{T} (\mathbf{m}_{i} - \mathbf{m}_{j})$$

► For a centered data set with $\sum_i \mathbf{m}_i = \mathbf{0}$, the Frobenius norm corresponds to the average (squared) distance between points

$$\begin{split} \sum_{i,j=1}^{k} \|\mathbf{m}_{i} - \mathbf{m}_{j}\|^{2} \\ &= \sum_{i,j=1}^{k} (\mathbf{m}_{i} - \mathbf{m}_{j})^{T} (\mathbf{m}_{i} - \mathbf{m}_{j}) \\ &= \sum_{i,j=1}^{k} (\|\mathbf{m}_{i}\|^{2} + \|\mathbf{m}_{j}\|^{2} - 2\mathbf{m}_{i}^{T}\mathbf{m}_{j}) \end{split}$$

► For a centered data set with $\sum_i \mathbf{m}_i = \mathbf{0}$, the Frobenius norm corresponds to the average (squared) distance between points

$$\begin{split} \sum_{i,j=1}^{k} \|\mathbf{m}_{i} - \mathbf{m}_{j}\|^{2} \\ &= \sum_{i,j=1}^{k} (\mathbf{m}_{i} - \mathbf{m}_{j})^{T} (\mathbf{m}_{i} - \mathbf{m}_{j}) \\ &= \sum_{i,j=1}^{k} (\|\mathbf{m}_{i}\|^{2} + \|\mathbf{m}_{j}\|^{2} - 2\mathbf{m}_{i}^{T}\mathbf{m}_{j}) \\ &= \sum_{j=1}^{k} \|\mathbf{M}\|_{F}^{2} + \sum_{i=1}^{k} \|\mathbf{M}\|_{F}^{2} - 2\sum_{i=1}^{k} \mathbf{m}_{i}^{T} (\underbrace{\sum_{j=1}^{k} \mathbf{m}_{j}}_{\mathbf{0}}) \end{split}$$

► For a centered data set with $\sum_i \mathbf{m}_i = \mathbf{0}$, the Frobenius norm corresponds to the average (squared) distance between points

$$\begin{split} \sum_{i,j=1}^{k} \|\mathbf{m}_{i} - \mathbf{m}_{j}\|^{2} &= \sum_{i,j=1}^{k} (\mathbf{m}_{i} - \mathbf{m}_{j})^{T} (\mathbf{m}_{i} - \mathbf{m}_{j}) \\ &= \sum_{i,j=1}^{k} (\|\mathbf{m}_{i}\|^{2} + \|\mathbf{m}_{j}\|^{2} - 2\mathbf{m}_{i}^{T}\mathbf{m}_{j}) \\ &= \sum_{j=1}^{k} \|\mathbf{M}\|_{F}^{2} + \sum_{i=1}^{k} \|\mathbf{M}\|_{F}^{2} - 2\sum_{i=1}^{k} \mathbf{m}_{i}^{T} (\underbrace{\sum_{j=1}^{k} \mathbf{m}_{j}}_{\mathbf{0}}) \\ &= 2k \cdot \|\mathbf{M}\|_{F}^{2} \end{split}$$

4 1 1 4 1 1 1

For a centered data set with ∑_i m_i = 0, the Frobenius norm corresponds to the average (squared) distance between points

$$\begin{split} \sum_{i,j=1}^{k} \|\mathbf{m}_{i} - \mathbf{m}_{j}\|^{2} \\ &= \sum_{i,j=1}^{k} (\mathbf{m}_{i} - \mathbf{m}_{j})^{T} (\mathbf{m}_{i} - \mathbf{m}_{j}) \\ &= \sum_{i,j=1}^{k} (\|\mathbf{m}_{i}\|^{2} + \|\mathbf{m}_{j}\|^{2} - 2\mathbf{m}_{i}^{T}\mathbf{m}_{j}) \\ &= \sum_{j=1}^{k} \|\mathbf{M}\|_{F}^{2} + \sum_{i=1}^{k} \|\mathbf{M}\|_{F}^{2} - 2\sum_{i=1}^{k} \mathbf{m}_{i}^{T} (\underbrace{\sum_{j=1}^{k} \mathbf{m}_{j}}_{\mathbf{0}}) \\ &= 2k \cdot \|\mathbf{M}\|_{F}^{2} \end{split}$$

• "loss" of distances: $\sum_{i,j=1}^{k} ||(\mathbf{m}_{i} - \mathbf{m}_{j})\mathbf{Q}||^{2} = 2k \cdot ||\mathbf{M}\mathbf{Q}||_{F}^{2}$ \mathbb{R}^{2} is a measure of how well distances are preserved

Outline

Matrix algebra

Roll your own DSM Matrix multiplication Association scores & normalization

Geometry

Metrics and norms Angles and orthogonality

Dimensionality reduction

Orthogonal projection PCA & SVD

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Singular value decomposition

 Fundamental result of matrix algebra: singular value decomposition (SVD) factorises any matrix M into

 $M = U \Sigma V^{T}$

where **U** and **V** are orthogonal and **\Sigma** is a diagonal matrix of singular values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_m > 0$

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

Singular value decomposition

- $m \le \min\{k, n\}$ is the inherent dimensionality (rank) of **M**
- Columns a_i of U are called left singular vectors, columns b_i of V (= rows of V^T) are right singular vectors
- Recall the "outer product" view of matrix multiplication:

$$\mathbf{U}\mathbf{V}^{T} = \sum_{i=1}^{m} \mathbf{a}_{i}\mathbf{b}_{i}^{T}$$

Hence the SVD corresponds to a sum of rank-1 components

$$\mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} = \sum_{i=1}^{m} \sigma_i \mathbf{a}_i \mathbf{b}_i^{\mathsf{T}}$$

Singular value decomposition

Key property of SVD: the first r components give the best rank-r approximation to M with respect to the Frobenius norm, i.e. they minimize the loss

$$\|\mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}_r^T - \mathbf{M}\|_F^2 = \|\mathbf{M}_r - \mathbf{M}\|_F^2$$

- Truncated SVD
 - \mathbf{U}_r , \mathbf{V}_r = first *r* columns of \mathbf{U} , \mathbf{V}
 - Σ_r = diagonal matrix of first *r* singular values

4 1 1 1 4 1 1 1
Singular value decomposition

Key property of SVD: the first r components give the best rank-r approximation to M with respect to the Frobenius norm, i.e. they minimize the loss

$$\|\mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}_r^T - \mathbf{M}\|_F^2 = \|\mathbf{M}_r - \mathbf{M}\|_F^2$$

Truncated SVD

- \mathbf{U}_r , \mathbf{V}_r = first *r* columns of \mathbf{U} , \mathbf{V}
- Σ_r = diagonal matrix of first *r* singular values
- It can be shown that

$$\|\mathbf{M}\|_{F}^{2} = \sum_{i=1}^{m} \sigma_{i}^{2}$$
 and $\|\mathbf{M}_{r}\|_{F}^{2} = \sum_{i=1}^{r} \sigma_{i}^{2}$

SVD dimensionality reduction

Columns of V_r form an orthogonormal basis of the optimal rank-r subspace because

$$\mathsf{MP} = \mathsf{MV}_r \mathsf{V}_r^T = \mathsf{U} \Sigma \underbrace{\mathsf{V}_r^T \mathsf{V}_r}_{=\mathsf{I}_r} \mathsf{V}_r^T = \mathsf{U}_r \Sigma_r \mathsf{V}_r^T = \mathsf{M}_r$$

SVD dimensionality reduction

Columns of V_r form an orthogonormal basis of the optimal rank-r subspace because

$$\mathsf{MP} = \mathsf{MV}_r \mathsf{V}_r^T = \mathsf{U} \Sigma \underbrace{\mathsf{V}_r^T \mathsf{V}_r}_{=\mathsf{I}_r} \mathsf{V}_r^T = \mathsf{U}_r \Sigma_r \mathsf{V}_r^T = \mathsf{M}_r$$

Dimensionality reduction uses the subspace coordinates

$$\mathbf{MV}_r = \mathbf{U}_r \mathbf{\Sigma}_r$$

SVD dimensionality reduction

Columns of V_r form an orthogonormal basis of the optimal rank-r subspace because

$$\mathsf{MP} = \mathsf{MV}_r \mathsf{V}_r^T = \mathsf{U} \Sigma \underbrace{\mathsf{V}_r^T \mathsf{V}_r}_{=\mathsf{I}_r} \mathsf{V}_r^T = \mathsf{U}_r \Sigma_r \mathsf{V}_r^T = \mathsf{M}_r$$

Dimensionality reduction uses the subspace coordinates

$$\mathbf{MV}_r = \mathbf{U}_r \mathbf{\Sigma}_r$$

- If M is centered, this also gives the best possible preservation of pairwise distances
 principal component analysis (PCA)
 w but centering is usally omitted in order to preserve sparseness.
 - but centering is usally omitted in order to preserve sparseness, so SVD captures vector lengths rather than distances

Scaling SVD dimensions

Singular values σ_i can be seen as weighting of the latent dimensions, which determines their contribution to

$$\|\mathbf{M}\mathbf{V}_r\|_F = \sigma_1^2 + \ldots + \sigma_r^2$$

Weighting can be adjusted by power scaling of the singular values:

$$\mathbf{U}_{r}\mathbf{\Sigma}_{r}^{p} = \begin{bmatrix} \vdots & \vdots \\ \sigma_{1}^{p}\mathbf{a}_{1} & \cdots & \sigma_{r}^{p}\mathbf{a}_{r} \\ \vdots & \vdots \end{bmatrix}$$

- ▶ p = 1: normal SVD projection
- p = 0: dimension weights equalized
- p = 2: more weight given to first latent dimensions
- Other weighting schemes possible (e.g. skip first dimensions)