Distributional Semantic Models
Part 4: Elements of matrix algebra

Stefan Evert
with Alessandro Lenci, Marco Baroni and Gabriella Lapesa

1Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
2University of Pisa, Italy
3University of Trento, Italy
4University of Stuttgart, Germany

http://wordspace.collocations.de/doku.php/course:start

Outline
Matrix algebra
Roll your own DSM
Matrix multiplication
Association scores & normalization

Geometry
Metrics and norms
Angles and orthogonality

Dimensionality reduction
Orthogonal projection
PCA & SVD

Matrices and vectors

- $k \times n$ matrix $M \in \mathbb{R}^{k \times n}$ is a rectangular array of real numbers

$$M = \begin{bmatrix}
m_{11} & \cdots & m_{1n} \\
\vdots & \ddots & \vdots \\
m_{k1} & \cdots & m_{kn}
\end{bmatrix}$$

- Each row $m_i \in \mathbb{R}^n$ is an n-dimensional vector

$$m_i = (m_{i1}, m_{i2}, \ldots, m_{in})$$

- Similarly, each column is a k-dimensional vector $\in \mathbb{R}^k$

```r
> options(digits=3)
> M <- DSM_TermTerm$M
> M[2, ] # row vector $m_2$ for "dog"
> M[, 5] # column vector for "important"
```
Matrices and vectors

- Vector \(x \in \mathbb{R}^n \) as single-row or single-column matrix
 - \(x = x^T = n \times 1 \) matrix ("vertical")
 - \(x^T = 1 \times n \) matrix ("horizontal")
- Transposition operator, \(T \), swaps rows & columns of matrix
- We need vectors \(r \in \mathbb{R}^k \) and \(c \in \mathbb{R}^n \) of marginal frequencies
- Notation for cell \(ij \) of co-occurrence matrix:
 - \(m_{ij} = O \) ... observed co-occurrence frequency
 - \(r_i = R \) ... row marginal (target)
 - \(c_j = C \) ... column marginal (feature)
 - \(N \) ... sample size

```r
> r <- DSM_TermTerm$rows$f
> c <- DSM_TermTerm$cols$f
> N <- DSM_TermTerm$globals$N
> t(r) # "horizontal" vector
> t(t(r)) # "vertical" vector
```

The outer product

- Compute matrix \(E \in \mathbb{R}^{k \times n} \) of expected frequencies
 \[
e_{ij} = \frac{r_i c_j}{N}
\]
 i.e. \(r[i] \times c[j] \) for each cell \(ij \)
- This is the outer product of \(r \) and \(c \)
 \[
 \begin{bmatrix}
 r_1 \\
 \vdots \\
 r_k
 \end{bmatrix}
 \begin{bmatrix}
 c_1 & c_2 & \cdots & c_n
 \end{bmatrix}
 =
 \begin{bmatrix}
 r_1 c_1 & r_1 c_2 & \cdots & r_1 c_n \\
 \vdots & \vdots & \cdots & \vdots \\
 r_k c_1 & r_k c_2 & \cdots & r_k c_n
 \end{bmatrix}
 \]
- The inner product of \(x, y \in \mathbb{R}^n \) is the sum \(x_1 y_1 + \ldots + x_n y_n \)

```r
> outer(r, c) / N
```

Scalar operations

- Scalar operations perform the same transformation on each element of a vector or matrix, e.g.
 - add / subtract fixed shift \(\mu \in \mathbb{R} \)
 - multiply / divide by fixed factor \(\sigma \in \mathbb{R} \)
 - apply function (\(\log, \sqrt{\cdot}, \ldots \)) to each element
- Allows efficient processing of large sets of values
- Element-wise binary operators on matching vectors / matrices
 - \(x + y \) = vector addition
 - \(x \odot y \) = element-wise multiplication (Hadamard product)

```r
> log(M + 1) # discounted log frequency weighting
> (M["cause", ] + M["effect", ]) / 2 # centroid vector
```
Matrix multiplication

\[
\begin{bmatrix}
 a_{ij} \\
 \vdots \\
 a_{in}
\end{bmatrix}
=
\begin{bmatrix}
 b_{i1} & \cdots & b_{in}
\end{bmatrix}
\cdot
\begin{bmatrix}
 c_{1j} \\
 \vdots \\
 c_{nj}
\end{bmatrix}
\]

\[A = B \cdot C\]

\((k \times m) (k \times n) (n \times m)\)

- \(B\) and \(C\) must be conformable (in dimension \(n\))
- Element \(a_{ij}\) is the inner product of the \(i\)-th row of \(B\) and the \(j\)-th column of \(C\)

\[a_{ij} = b_{i1}c_{1j} + \cdots + b_{in}c_{nj} = \sum_{r=1}^{n} b_{ir}c_{rj}\]

Transposition and multiplication

- The transpose \(A^T\) of a matrix \(A\) swaps rows and columns:

\[A^T = \begin{bmatrix}
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3
\end{bmatrix}
=
\begin{bmatrix}
 a_1 & b_1 \\
 a_2 & b_2 \\
 a_3 & b_3
\end{bmatrix}\]

- Properties of the transpose:
 - \((A + B)^T = A^T + B^T\)
 - \((\lambda A)^T = \lambda (A^T) =: \lambda A^T\)
 - \((A \cdot B)^T = B^T \cdot A^T\) [note the different order of \(A\) and \(B\)]
 - \(I^T = I\)
- \(A\) is called symmetric iff \(A^T = A\)
- Symmetric matrices have many special properties that will become important later (e.g. eigenvalues)

Some properties of matrix multiplication

- Associativity: \(A(BC) = (AB)C =: ABC\)
- Distributivity: \(A(B + B') = AB + AB'\)
- \((A + A')B = AB + A'B\)
- Scalar multiplication: \((\lambda A)B = A(\lambda B) = \lambda(AB) =: \lambda AB\)
- Not commutative in general: \(AB \neq BA\)
- The \(k\)-dimensional square-diagonal identity matrix

\[I_k := \begin{bmatrix}
 1 & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & 1
\end{bmatrix}\]

with \(I_k \cdot A = A \cdot I_n = A\)

The outer product as matrix multiplication

- The outer product is a special case of matrix multiplication

\[E = \frac{1}{n} (r \cdot c^T)\]

- The other special case is the inner product

\[x^T y = \sum_{i=1}^{n} x_i y_i\]

- NB: \(x \cdot x\) and \(x^T \cdot x^T\) are not conformable

three ways to compute the matrix of expected frequencies

- \(E \leftarrow \text{outer}(r, c) / N\)
- \(E \leftarrow (r \%*\% t(c)) / N\)
- \(E \leftarrow \text{tcrossprod}(r, c) / N\)
- \(E\)
Computing association scores

- Association scores = element-wise combination of M and E, e.g. for (pointwise) Mutual Information

 $$S = \log_2(M \odot E)$$

- \odot = element-wise division similar to Hadamard product \odot

- For sparse AMs such as PPMI, we need to compute $\max \{s_{ij}, 0\}$ for each element of the scored matrix S

```r
> log2(M / E)
> S <- pmax(log2(M / E), 0) # not max()!
> S
```

Normalizing vectors

- Compute Euclidean norm of vector $x \in \mathbb{R}^n$:

 $$\|x\|_2 = \sqrt{x_1^2 + \ldots + x_n^2}$$

- Normalized vector $\|x_0\|_2 = 1$ by scalar multiplication:

 $$x_0 = \frac{1}{\|x\|_2} x$$

```r
> x <- S[2,]
> b <- sqrt(sum(x ^ 2)) # Euclidean norm of x
> x0 <- x / b           # normalized vector
> sqrt(sum(x0 ^ 2))
```

Normalizing matrix rows

- Compute vector $b \in \mathbb{R}^k$ of norms of row vectors of S

- Can you find an elegant way to multiply each row of S with the corresponding normalization factor b_i^{-1}?

- Multiplication with diagonal matrix D_b^{-1}

 $$S_0 = D_b^{-1} \cdot S$$

 $$S_0 = \begin{bmatrix}
 b_1^{-1} & \cdots & s_{1n} \\
 \vdots & \ddots & \vdots \\
 b_k^{-1} & \cdots & s_{kn}
 \end{bmatrix} \cdot \begin{bmatrix}
 s_{11} & \cdots & s_{1n} \\
 \vdots & \ddots & \vdots \\
 s_{k1} & \cdots & s_{kn}
 \end{bmatrix}$$
Normalizing matrix rows

- Compute vector \(b \in \mathbb{R}^k \) of norms of row vectors of \(S \)
- Can you find an elegant way to multiply each row of \(S \) with the corresponding normalization factor \(b_i^{-1} \)?
- Multiplication with diagonal matrix \(D_b^{-1} \)

\[S_0 = D_b^{-1} \cdot S \]

```r
> b <- sqrt(rowSums(S^2)) # more efficient
> S0 <- normalize.rows(S, method="euclidean") # the easy way
```

Outline

- Matrix algebra
- Roll your own DSM
- Matrix multiplication
- Association scores & normalization

Geometry

- Metrics and norms
- Angles and orthogonality
- Dimensionality reduction
- Orthogonal projection
- PCA & SVD

Norm: a measure of length

- A general norm \(\|u\| \) for the length of a vector \(u \) must satisfy the following axioms:
 - \(\|u\| > 0 \) for \(u \neq 0 \)
 - \(\|\lambda u\| = |\lambda| \cdot \|u\| \) (homogeneity)
 - \(\|u + v\| \leq \|u\| + \|v\| \) (triangle inequality)
- Every norm induces a metric

\[d(u, v) := \|u - v\| \]

with two desirable properties
- translation-invariant: \(d(u + x, v + x) = d(u, v) \)
- scale-invariant: \(d(\lambda u, \lambda v) = |\lambda| \cdot d(u, v) \)
- \(d_p(u, v) \) is induced by the Minkowski norm for \(p \geq 1 \):

\[\|u\|_p := (|u_1|^p + \cdots + |u_n|^p)^{1/p} \]
Norm: a measure of length

- Visualisation of norms in \mathbb{R}^2 by plotting unit circle, i.e. points u with $\|u\| = 1$
- Here: p-norms $\|\cdot\|_p$ for different values of p
- Triangle inequality \iff unit circle is convex
- This shows that p-norms with $p < 1$ would violate the triangle inequality

Consequence for DSM: $p \ll 2$ sensitive to small differences in many coordinates, $p \gg 2$ to larger differences in few coord.

Euclidean norm & inner product

- The Euclidean norm $\|u\|_2 = \sqrt{u^T u}$ is special because it can be derived from the inner product:
 \[x^T y = x_1 y_1 + \cdots + x_n y_n \]
- The inner product is a positive definite and symmetric bilinear form with an important geometric interpretation:
 \[\cos \phi = \frac{u^T v}{\|u\|_2 \cdot \|v\|_2} \]
 for the angle ϕ between vectors $u, v \in \mathbb{R}^n$
 - the value $\cos \phi$ is known as the cosine similarity measure
 - In particular, u and v are orthogonal iff $u^T v = 0$

Cosine similarity in R

- Cosine similarities can be computed very efficiently if vectors are pre-normalized, so that $\|u\|_2 = \|v\|_2 = 1$
- just need all inner products $m_i^T m_j$ between row vectors of M

\[
(M \cdot M^T)_{ij} = m_i^T m_j
\]

cosine similarities for row-normalized matrix:
> sim <- tcrossprod(S0)
> angles <- acos(pmin(sim, 1)) * (180 / pi)
We can now prove that Euclidean distance and cosine similarity are equivalent: if vectors are normalised ($\|u\|_2 = \|v\|_2 = 1$), both lead to the same neighbour ranking

\[
d_2(u, v) = \sqrt{\|u - v\|_2} = \sqrt{(u - v)^T(u - v)}
\]

\[
= \sqrt{u^Tu + v^Tv - 2u^Tv}
\]

\[
= \sqrt{\|u\|_2 + \|v\|_2 - 2u^Tv}
\]

\[
= \sqrt{2 - 2\cos \phi}
\]

$\Rightarrow d_2(u, v)$ is a monotonically increasing function of ϕ

- A linear **subspace** $B \subseteq \mathbb{R}^n$ of rank $r \leq n$ is spanned by a set of r linearly independent basis vectors

 \[
 B = \{b_1, \ldots, b_r\}
 \]

- Every point u in the subspace is a unique linear combination of the basis vectors

 \[
 u = x_1b_1 + \ldots + x_rb_r
 \]

 with coordinate vector $x \in \mathbb{R}^r$

- Basis matrix V with column vectors b_i:

 \[
 u = Vx
 \]

- Particularly convenient with orthonormal basis:

 \[
 \|b_i\|_2 = 1
 \]

 \[
 b_i^Tb_j = 0 \quad \text{for } i \neq j
 \]

- Corresponding basis matrix V is (column)-**orthogonal**

 \[
 V^TV = I_r
 \]
The mathematics of projections

- 1-d subspace spanned by basis vector $\|b\|_2 = 1$
- For any point u, we have
 $$\cos \varphi = \frac{b^T u}{\|b\|_2 \cdot \|u\|_2}$$
- Trigonometry: coordinate of point on the line is $x = \|u\|_2 \cdot \cos \varphi = b^T u$
- The projected point in original space is then given by
 $$b \cdot x = b(b^T u) = (bb^T)u = Pu$$

where P is a projection matrix of rank 1

The mathematics of projections

- Decomposition also applies to squared Euclidean distances:
 $$\|u - v\|^2 = \|Pu - Pv\|^2 + \|Qu - Qv\|^2$$
- $\|Qu\|^2$ as measure for “loss” resulting from projection:
 $$\frac{\|Qu\|^2}{\|u\|^2} = 1 - \frac{\|Pu\|^2}{\|u\|^2} = 1 - R^2$$

where R^2 is the proportion of vector length “preserved” by P, similar to the explained variance R^2 in linear regression

Optimal projections and subspaces

- Optimal subspace maximises R^2 across a data set M, which is now specified in terms of row vectors m_i^T:
 $$x_i^T = m_i^T V$$
 $$m_i^T P = m_i^T VV^T$$
 $$X = MV$$
 $$MP = MVV^T$$

- Our “faithfulness” measure is thus given by
 $$R^2 = \frac{\sum_{i=1}^k |m_i^T P|^2}{\sum_{i=1}^k |m_i|^2} = \frac{|MP|^2}{|M|^2}$$

with the (squared) Frobenius norm
 $$|M|^2 = \sum_{i,j} (m_{ij})^2 = \sum_{i=1}^k |m_i|^2$$

For an orthogonal basis matrix V with columns b_1, \ldots, b_r, the projection into the rank-r subspace B is given by

$$Pu = \left(\sum_{i=1}^r b_i b_i^T \right) u = VV^T u$$

and its subspace coordinates are $x = Vu$
Optimal projections and subspaces

- For a centered data set with \(\sum_i m_i = 0 \), the Frobenius norm corresponds to the average (squared) distance between points

\[
\sum_{i,j=1}^{k} ||m_i - m_j||^2 = \sum_{i,j=1}^{k} (||m_i||^2 + ||m_j||^2 - 2m_i^T m_j) = \sum_{i=1}^{k} ||M||^2_F + \sum_{j=1}^{k} ||M||^2_F - 2 \sum_{i=1}^{k} m_i^T (\sum_{j=1}^{k} m_j) = 2k \cdot ||M||^2_F.
\]

- “loss” of distances: \(\sum_{i,j=1}^{k} ||(m_i - m_j)Q||^2 = 2k \cdot ||MQ||^2_F \)

\(R^2 \) is a measure of how well distances are preserved.

Singular value decomposition

- Fundamental result of matrix algebra: \textbf{singular value decomposition} (SVD) factorises any matrix \(M \) into

\[
M = U \Sigma V^T
\]

where \(U \) and \(V \) are orthogonal and \(\Sigma \) is a diagonal matrix of \textbf{singular values} \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_m > 0 \)

\[
\begin{bmatrix} n \\ k \\ m \\ \end{bmatrix} = \begin{bmatrix} n \\ k \\ m \\ \end{bmatrix} \begin{bmatrix} \sigma_1 & m \\ m & \ddots & \vdots \\ m & \ddots & \Sigma \\ \sigma_1 & \cdots & \sigma_m \\ \end{bmatrix} \begin{bmatrix} n \\ m \\ \end{bmatrix}
\]

- \(m \leq \min\{k,n\} \) is the inherent dimensionality (rank) of \(M \)

- Columns \(a_i \) of \(U \) are called left singular vectors, columns \(b_i \) of \(V \) (= rows of \(V^T \)) are right singular vectors

- Recall the “outer product” view of matrix multiplication:

\[
UV^T = \sum_{i=1}^{m} a_i b_i^T
\]

- Hence the SVD corresponds to a sum of rank-1 components

\[
M = U \Sigma V^T = \sum_{i=1}^{m} \sigma_i a_i b_i^T
\]
Singular value decomposition

- Key property of SVD: the first r components give the best rank-r approximation to M with respect to the Frobenius norm, i.e. they minimize the loss

$$\|U_r, \Sigma_r, V_r^T - M\|_F^2 = \|M_r - M\|_F^2$$

- **Truncated SVD**
 - U_r, V_r = first r columns of U, V
 - Σ_r = diagonal matrix of first r singular values
 - It can be shown that

$$\|M\|_F^2 = \sum_{i=1}^m \sigma_i^2 \quad \text{and} \quad \|M_r\|_F^2 = \sum_{i=1}^r \sigma_i^2$$

SVD dimensionality reduction

- Columns of V_r form an orthonormal basis of the optimal rank-r subspace because

$$MP = MV_r^T = U \Sigma V_r^T V_r^T = U_r \Sigma_r V_r^T = M_r$$

- **Dimensionality reduction** uses the subspace coordinates

$$MV_r = U_r \Sigma_r$$

- If M is centered, this also gives the best possible preservation of pairwise distances \Rightarrow **principal component analysis (PCA)**

 - but centering is usually omitted in order to preserve sparseness, so SVD captures vector lengths rather than distances

Scaling SVD dimensions

- Singular values σ_i can be seen as weighting of the latent dimensions, which determines their contribution to

$$\|MV_r\|_F = \sigma_1^2 + \ldots + \sigma_r^2$$

- Weighting can be adjusted by **power scaling** of the singular values:

$$U_r \Sigma_p = \begin{bmatrix} \vdots & \vdots & \vdots \\ \sigma_p a_1 & \cdots & \sigma_p a_r \\ \vdots & \vdots & \vdots \end{bmatrix}$$

 - $p = 1$: normal SVD projection
 - $p = 0$: dimension weights equalized
 - $p = 2$: more weight given to first latent dimensions

 - Other weighting schemes possible (e.g. skip first dimensions)