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\EVDEEIEER  Roll your own DSM

Matrices and vectors
» k x n matrix M € RF*" is a rectangular array of real numbers

mip -+ Mip
M:

Mgy -+ Mgy
» Each row m; € R” is an n-dimensional vector
m; = (m,-1, mio, ..., m,-,,)
» Similarly, each column is a k-dimensional vector € R¥

> options(digits=3)

> M <- DSM_TermTerm$M

> M[2, 1 # row vector my for ‘‘dog"

> M[, 5] # column vector for “‘important”
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Matrices and vectors Scalar operations

» Vector x € R" as single-row or single-column matrix
» x=x'T = nx 1 matrix (“vertical”) > Scalar operations perform the same transformation on each
» x” =1 x n matrix (“horizontal”) element of a vector or matrix, e.g.
» transposition operator T swaps rows & columns of matrix » add / subtract fixed shift 4 € R

» We need vectors r € R¥ and ¢ € R” of marginal frequencies » multiply / divide by fixed factor o € R

» Notation for cell ij of co-occurrence matrix: > apply function (log, /-, ..) to each element
» mj; = O ... observed co-occurrence frequency » Allows efficient processing of large sets of values
» rj=R ... row marginal (target) » Element-wise binary operators on matching vectors / matrices
» ¢;= C ... column marginal (feature) > x +y = vector addition
» N ... sample size

> x @y = element-wise multiplication (Hadamard product)

r <- DSM_TermTerm$rows$f

¢ <- DSM_TermTerm$cols$f

N <- DSM_TermTerm$globals$N
t () # “‘horizontal’’ vector
t(t(xr)) # “‘vertical'' vector

> log(M + 1) # discounted log frequency weighting
> (M["cause", ] + M["effect", ]) / 2 # centroid vector

V V. V V VvV
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Matrix algebra Roll your own DSM Matrix algebra Matrix multiplication

The outer product Outline
» Compute matrix E € R¥*" of expected frequencies
. ricj Matrix algebra
=

Matrix multiplication

i.e. r[i] * c[j] for each cell jj

» This is the outer product of r and c

ni - [Cl Q- cn} ne ne - nc

Ik rkC1 k€2 -+ IkCp

» The inner product of x,y € R" is the sum x1y1 + ... + XaVn

> outer(r, c) / N
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Matrix algebra Matrix multiplication

Matrix multiplication

cij
ajj = |bi bin -
Cnj
A = B . C
(k x m) (k x n) (nx m)

» B and C must be conformable (in dimension n)

> Element aj is the inner product of the i-th row of B and the
j-th column of C

n
aj = bicij+ ...+ bincoj = Y bjrcyj
t=1
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Matrix algebra Matrix multiplication

Transposition and multiplication

» The transpose AT of a matrix A swaps rows and columns:

ap b 4
1 1 _|:31 an a3:|

an b2
a5 bs b1 by b3

» Properties of the transpose:
> (A+B)T =AT + BT
» (AA)T = \(AT) =: AAT
» (A-B)T =B7 - AT [note the different order of A and B!]
1T =1
» A is called symmetric iff AT = A

» symmetric matrices have many special properties that will
become important later (e.g. eigenvalues)
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Matrix algebra Matrix multiplication

Some properties of matrix multiplication

A(BC) = (AB)C =: ABC

A(B +B’) = AB + AB’
(A+A)B=AB+AB

Scalar multiplication:  (AA)B = A(AB) = A\(AB) =: AAB

Associativity:
Distributivity:

» Not commutative in general: AB # BA

» The k-dimensional square-diagonal identity matrix

1
Iy = with I, - A=A-1,=A
1
is the neutral element of matrix multiplication
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Matrix algebra Matrix multiplication

The outer product as matrix multiplication
» The outer product is a special case of matrix multiplication
1 T
E=p(r-c’)

» The other special case is the inner product

n
xTy = in}’i
i=1

T are not conformable

» NB: x-x and x” - x
# three ways to compute the matrix of expected frequencies
> E <- outer(r, c) / N
> E <= (r %% t(c)) / N
> E <- tcrossprod(r, c) / N
> E
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Association scores & normalization
Outline

Matrix algebra

Association scores & normalization
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Association scores & normalization
Normalizing vectors

» Compute Euclidean norm of vector x € R":

[[l2 = \/xZ + ... +x2
» Normalized vector ||xg]|2 = 1 by scalar multiplication:

1
Xp = T——X
12

> x <- S[2, ]

> b <~ sqrt(sum(x ~ 2)) # Euclidean norm of x
>x0<-x /Db # normalized vector

> sqrt(sum(x0 ~ 2))
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Matrix algebra Association scores & normalization

Computing association scores

» Association scores = element-wise combination of M and E,
e.g. for (pointwise) Mutual Information

S =log,(MQE)

> @ = element-wise division similar to Hadamard product ®

» For sparse AMs such as PPMI, we need to compute
max {sj;, 0} for each element of the scored matrix S

> log2(M / E)
> S <- pmax(log2(M / E), 0) # notmax() !
>SS
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Matrix algebra Association scores & normalization

Normalizing matrix rows

» Compute vector b € R¥ of norms of row vectors of §

» Can you find an elegant way to multiply each row of S with
the corresponding normalization factor bi_l?

» Multiplication with diagonal matrix D, !

So = Db_l -S
-1
1 S11 -+ Sin
So = :
b1
P Sk1 Skn
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Matrix algebra Association scores & normalization

Normalizing matrix rows

» Compute vector b € R¥ of norms of row vectors of S

v

Can you find an elegant way to multiply each row of S with
the corresponding normalization factor b; '?

v

Multiplication with diagonal matrix D, !

So=Dp 'S

\2
o’

<- sqrt(rowSums(S~2))
> b <- rowNorms(S, method="euclidean") # more efficient

> S0 <- diag(1 / b) %*% S
> S0 <- scaleMargins(S, rows=(1 / b)) # much more efficient

> S0 <- normalize.rows(S, method="euclidean") # the easy way
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Metrics and norms
Metric: a measure of distance

» A metric is a general measure of the distance d(u,v)
between points u and v, which satisfies the following axioms:

» d(u,v) =d(v,u)

» d(u,v)>0foruv
> d(u,u) =0

>

d(u,w) < d(u,v)+ d(v,w) (triangle inequality)
» Metrics form a very broad class of distance measures, some of
which do not fit in well with our geometric intuitions

» Useful: family of Minkowski p-metrics

1
dp (u,v) := (Jug — 1P + -+ + |up — valP) P op>1
dp (u,v) :=|ug —wi|P + -+ |up — vp|P 0<p<l1
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Metrics and norms
Outline

Geometry
Metrics and norms
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Norm: a measure of length

> A general norm |Ju|| for the length of a vector u must satisfy
the following axioms:
> |jul| >0 foru#0
> [[Aul| = |A] - [Ju]| (homogeneity)
> JJu+v| <|ull + |Jv|| (triangle inequality)
» Every norm induces a metric

d(u,v) = [lu—v]

with two desirable properties
» translation-invariant: d(u+x,v+x) = d(u,v)
» scale-invariant: d(Au, Av) = || - d(u,v)
» dp (u,v) is induced by the Minkowski norm for p > 1:

1
lullp = (lugl? + -+ [un]?) /P
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Geometry Metrics and norms

Norm: a measure of length

Unit circles for different p-norms

1.0

by plotting unit circle, i.e.
points u with |jul| =1

0.5

> Here: p-norms |||, for
different values of p

0.0

» Triangle inequality <—
unit circle is convex

» This shows that p-norms

triangle inequality
-1.0 -0.5 0.0 0.5 1.0

= Consequence for DSM: p <« 2 sensitive to small differences in
many coordinates, p > 2 to larger differences in few coord.
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Euclidean norm & inner product

» The Euclidean norm |jul2 = VuTu is special because it can
be derived from the inner product:

xTy:x1y1+~--+x,,y,,

» The inner product is a positive definite and symmetric bilinear
form with an important geometric interpretation:

UTV

COS =
= Tulz - vl

for the angle ¢ between vectors u,v € R”
> the value cos ¢ is known as the cosine similarity measure

» In particular, u and v are orthogonal iff u’v =0
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» Visualisation of norms in R?

with p < 1 would violate the

21 /39

23 /39

Angles and orthogonality
Outline

Geometry

Angles and orthogonality
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Cosine similarity in R

» Cosine similarities can be computed very efficiently if vectors
are pre-normalized, so that |juls = |lv]2 =1

w5 just need all inner products m/ m; between row vectors of M

- : . .
M-M' = c(mp My my
my

g (“A '“nT)U:: "#T"U

# cosine similarities for row-normalized matrix:
> sim <- tcrossprod(S0)
> angles <- acos(pmin(sim, 1)) * (180 / pi)
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Euclidean distance or cosine similarity?

» We can now prove that Euclidean distance and cosine
similarity are equivalent: if vectors are normalised
(Jlull2 = ||lv]l2 = 1), both lead to the same neighbour ranking

do (u,v) =/l — vl = \/(u—v)T(u—v)
=VuTu+viv—2uTy
= llull2 + ]2 — 2uTv
=+/2—2cos ¢

= dy (u,v) is a monotonically increasing function of ¢
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Linear subspace & basis

» A linear subspace B C R” of rank r < n is spanned by a set
of r linearly independent basis vectors
B = {bl,...,b,—}

» Every point u in the subspace is a unique linear combination
of the basis vectors

u=xib;y +... 4+ xb,

with coordinate vector x € R"

» Basis matrix V with column vectors b;:

u=Vx
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Orthogonal projection
Outline

Dimensionality reduction
Orthogonal projection
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Orthogonal projection
Orthonormal basis

» Particularly convenient with orthonormal basis:

[bifl2 =1

» Corresponding basis matrix V is (column)-orthogonal

viv=l,
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DI EELE A ST Orthogonal projection

The mathematics of projections

» 1-d subspace spanned by u
basis vector ||b|l> =1

» For any point u, we have

b"u B
[b1l2 - Tl W= Py = bW
llull>
» Trigonometry: coordinate
of point on the line is '
x=|lull2-cosp =bTu

cos p =

[blla =1

» The projected point in original space is then given by
b-x=b(b"u) = (bb")u = Pu

where P is a projection matrix of rank 1
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DINERETNEIRAAE TS Orthogonal projection

The mathematics of projections

» Decomposition also applies to squared Euclidean distances:
lu—v[?* = [[Pu—Pv[?+ [ Qu - Qu|?
> ||Qu||? as measure for “loss” resulting from projection:

1Qu[* _ ., [IPul?

=1- =1-R?
Jul? [[ul?

where R? is the proportion of vector length “preserved” by P,
similar to the explained variance R? in linear regression
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DI ET A S Orthogonal projection

The mathematics of projections

» For an orthogonal basis matrix V with columns by, ... b,, the
projection into the rank-r subspace B is given by

Pu= (Z bbT> u=VV'u
i=1

and its subspace coordinates are x = Vu

» Projection can be seen as decomposition into the projected
vector and its orthogonal complement

u=Pu+(u—Pu)=Pu+(I-P)u=Pu+Qu
» Because of orthogonality, we have

lull> = [Pul* + || Qu]®
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DI COETHE AT ITa S Orthogonal projection

Optimal projections and subspaces

» Optimal subspace maximises R? across a data set M, which is
now specified in terms of row vectors m/ :

x] =m]Vv m/P=m/vv’
X =MV MP = MVV'™

» Our “faithfulness” measure is thus given by

k
2 _ i:1||miTP||2 _ ||MP||%—'
Y lm]|2 IM|[Z

with the (squared) Frobenius norm

k
IM[[E = "(my)* = [lmil?
i i=1

DSM Tutorial — Part 4
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DI EELE A ST Orthogonal projection

Optimal projections and subspaces

> For a centered data set with }_; m; = 0, the Frobenius norm
corresponds to the average (squared) distance between points

S jmallmi — my?

= Zf’fj:l(mi -

m;)7 (m; —m;)

k
=K s (Imi]l2 + [|my]2 — 2m] m;)

= Zjl'(:1||M||%: + X5 (IM|E - 230K, miT(ZJl'(:l m;)
\W—/

— 2k M}

0

» “loss” of distances: Zf"j:1||(m,~ - m;)Q|2 =2k - |MQ||%

1= R? is a measure of how well distances are preserved

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

DSM Tutorial — Part 4 wordspace.collocations.de 33 /39

Singular value decomposition

» Fundamental result of matrix algebra: singular value
decomposition (SVD) factorises any matrix M into

M=uUzVv’

where U and V are orthogonal and X is a diagonal matrix of
singular values 01 > 00 > - >0, >0

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

m
n
01 m
. T
U m - lm V
Y op
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PCA & SVD
Outline

Dimensionality reduction

PCA & SVD

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial — Part 4 wordspace.collocations.de 34 /39

Singular value decomposition

» m < min{k, n} is the inherent dimensionality (rank) of M
» Columns a; of U are called left singular vectors,
columns b; of V (= rows of VT) are right singular vectors

» Recall the “outer product” view of matrix multiplication:

m

UV’ =>"ab/

i=1

» Hence the SVD corresponds to a sum of rank-1 components

m
M=UxV" =) oab/
i=1

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial — Part 4 wordspace.collocations.de 36 / 39




Singular value decomposition

» Key property of SVD: the first r components give the best
rank-r approximation to M with respect to the Frobenius
norm, i.e. they minimize the loss

IU.Z,V] =M% =M, - M| 7

5= Truncated SVD

» U,, V, = first r columns of U, V
» X, = diagonal matrix of first r singular values

» |t can be shown that

m r
IMI[E=>_0f and [M[F =D o7
i—1 i=1
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FEn L
Scaling SVD dimensions

» Singular values o; can be seen as weighting of the latent
dimensions, which determines their contribution to

2
r

MV, |f=02+... 40

» Weighting can be adjusted by power scaling of the singular
values:

UXP = |ofa; - ofa,

» p = 1: normal SVD projection
» p = 0: dimension weights equalized
» p =2: more weight given to first latent dimensions

» Other weighting schemes possible (e.g. skip first dimensions)
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SVD dimensionality reduction

» Columns of V, form an orthogonormal basis of the optimal
rank-r subspace because

MP =MV, V] =UuxzV'V,V] =U,Z,V] = M,
N———

=1,

» Dimensionality reduction uses the subspace coordinates
MV, =U,X,

» If M is centered, this also gives the best possible preservation
of pairwise distances = principal component analysis (PCA)
= but centering is usally omitted in order to preserve sparseness,
so SVD captures vector lengths rather than distances
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