Distributional Semantic Models #### Part 3: Evaluation of distributional similarity #### Stefan Evert¹ with Alessandro Lenci², Marco Baroni³ and Gabriella Lapesa⁴ ¹Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany ²University of Pisa, Italy ³University of Trento, Italy ⁴University of Stuttgart, Germany http://wordspace.collocations.de/doku.php/course:start Copyright © 2009-2017 Evert, Lenci, Baroni & Lapesa | Licensed under CC-by-sa version 3.0 #### Outline #### What is semantic similarity? Semantic similarity and relatedness Attributional similarity & quantitative evaluation #### Parameter evaluation Evaluation strategies An example (Bullinaria & Levy 2007, 2012) #### A large scale evaluation study Tasks & parameters Methodology for DSM Evaluation Evaluation on Standard Tasks Summary & conclusion #### Outline #### What is semantic similarity? #### Semantic similarity and relatedness Attributional similarity & quantitative evaluation #### Parameter evaluation Evaluation strategies An example (Bullinaria & Levy 2007, 2012) #### A large scale evaluation study Tasks & parameters Methodology for DSM Evaluation Evaluation on Standard Tasks Evaluation on Standard Tasks Summary & conclusion # Distributional similarity as semantic similarity - ► DSMs interpret semantic similarity as a quantitative notion - ▶ if **a** is closer to **b** than to **c** in the distributional vector space, then **a** is more semantically similar to **b** than to **c** | rhino | fall | rock | |------------|-------------|---------| | woodpecker | rise | lava | | rhinoceros | increase | sand | | swan | fluctuation | boulder | | whale | drop | ice | | ivory | decrease | jazz | | plover | reduction | slab | | elephant | logarithm | cliff | | bear | decline | рор | | satin | cut | basalt | | sweatshirt | hike | crevice | ## Types of semantic relations in DSMs Nearest DSM neighbors have different types of semantic relations. #### car (BNC, L2/R2 span) - van co-hyponym - vehicle hyperonym - truck co-hyponym - motorcycle co-hyponym - driver related entity - motor part - lorry co-hyponym - motorist related entity - cavalier hyponym - bike co-hyponym #### car (BNC, L30/R30 span) - drive function - park typical action - bonnet part - windscreen part - hatchback part - headlight part - jaguar hyponym - garage location - cavalier hyponym - tyre part http://clic.cimec.unitn.it/infomap-query/ ### Manual analysis of semantic relations for 44 concrete English nouns (Baroni and Lenci 2008) Taxonomic category: cc (co-)hyponym ch hypernym Properties of entity: eb typical behaviour ece external component ese surface property Situationally associated: sa action se other entity sf function location Figure 1: Distribution of property types across property spaces. Distribution of semantic relations among DSM neighbours (SVD), pattern collocations (StruDEL) and human-generated properties (NORMS). ### Semantic similarity and relatedness - Attributional similarity two words sharing a large number of salient features (attributes) - synonymy (car/automobile) - hyperonymy (car/vehicle) - co-hyponymy (car/van/truck) ## Semantic similarity and relatedness - Attributional similarity two words sharing a large number of salient features (attributes) - synonymy (car/automobile) - hyperonymy (car/vehicle) - co-hyponymy (car/van/truck) - Semantic relatedness (Budanitsky and Hirst 2006) two words semantically associated without necessarily being similar - function (car/drive) - meronymy (car/tyre) - location (car/road) - attribute (car/fast) ## Semantic similarity and relatedness - Attributional similarity two words sharing a large number of salient features (attributes) - synonymy (car/automobile) - hyperonymy (car/vehicle) - co-hyponymy (car/van/truck) - Semantic relatedness (Budanitsky and Hirst 2006) two words semantically associated without necessarily being similar - ► function (car/drive) - meronymy (car/tyre) - ▶ location (car/road) - attribute (car/fast) - Relational similarity (Turney 2006) similar relation between pairs of words (analogy) - policeman: gun :: teacher: book - mason: stone :: carpenter: wood - traffic: street :: water: riverbed #### Outline #### What is semantic similarity? Semantic similarity and relatedness Attributional similarity & quantitative evaluation #### Parameter evaluation **Evaluation strategies** An example (Bullinaria & Levy 2007, 2012) #### A large scale evaluation study Tasks & parameters Methodology for DSM Evaluation **Evaluation on Standard Tasks** Summary & conclusion # DSMs and semantic similarity - DSMs are thought to represent paradigmatic similarity - words that tend to occur in the same contexts - Words that share many contexts will correspond to concepts that share many attributes (attributional similarity), i.e. concepts that are taxonomically/ontologically similar - synonyms (rhino/rhinoceros) - antonyms and values on a scale (good/bad) - co-hyponyms (rock/jazz) - hyper- and hyponyms (rock/basalt) - Taxonomic similarity is seen as the fundamental semantic relation organising the vocabulary of a language, allowing categorization, generalization and inheritance # Evaluation of attributional similarity - Synonym identification - ► TOEFL test - Modeling semantic similarity judgments - Rubenstein/Goodenough norms - ▶ WordSim-353 - Noun categorization - ESSLLI 2008 dataset - Almuhareb & Poesio dataset (AP) - **>** . . . - Semantic priming - Hodgson dataset - Semantic Priming Project ### Give it a try ... - The wordspace package contains pre-compiled DSM vectors - based on a large Web corpus (9 billion words) - ▶ L4/R4 surface span, log-transformed G^2 , SVD dim. red. - ▶ targets = lemma + POS code (e.g. white_J) - compatible with evaluation tasks included in package ``` library(wordspace) M <- DSM Vectors nearest.neighbours(M, "walk V") amble V stroll V traipse V potter V tramp V 21.8 19.4 21.8 22.6 22.9 saunter_V wander_V trudge_V leisurely_R saunter_N 23.5 23.7 23.8 26.2 26.4 # you can also try white, apple and kindness ``` - ▶ The TOEFL dataset (80 items) - ► Target: levied Candidates: believed, correlated, imposed, requested ``` # ask your course instructor for non-public data package ``` - > library(wordspaceEval) - > head(TOEFL80) - ▶ The TOEFL dataset (80 items) - ► Target: levied Candidates: believed, correlated, imposed, requested ``` # ask your course instructor for non-public data package ``` - > library(wordspaceEval) - > head(TOEFL80) - ▶ The TOEFL dataset (80 items) - Target: levied Candidates: believed, correlated, imposed, requested ► Target fashion Candidates: craze, fathom, manner, ration ``` # ask your course instructor for non-public data package ``` - > library(wordspaceEval) - > head(TOEFL80) - ▶ The TOEFL dataset (80 items) - ► Target: *levied* Candidates: believed, correlated, imposed, requested Target fashion Candidates: craze, fathom, manner, ration ``` # ask your course instructor for non-public data package ``` - > library(wordspaceEval) - > head(TOEFL80) - ▶ The TOEFL dataset (80 items) - Target: levied Candidates: believed, correlated, imposed, requested - ► Target fashion Candidates: craze, fathom, manner, ration - DSMs and TOEFL - 1. take vectors of the target (t) and of the candidates $(c_1 \dots c_n)$ - 2. measure the distance between **t** and \mathbf{c}_i , with $1 \le i \le n$ - 3. select \mathbf{c}_i with the shortest distance in space from \mathbf{t} - # ask your course instructor for non-public data package - > library(wordspaceEval) - > head(TOEFL80) ### Humans vs. machines on the TOEFL task Average foreign test taker: 64.5% #### And you? > eval.multiple.choice(TOEFL80, M) #### Humans vs. machines on the TOEFL task - Average foreign test taker: 64.5% - Macquarie University staff (Rapp 2004): - Average of 5 non-natives: 86.75% - Average of 5 natives: 97.75% ### And you? > eval.multiple.choice(TOEFL80, M) ### Humans vs. machines on the TOEFL task - Average foreign test taker: 64.5% - Macquarie University staff (Rapp 2004): - Average of 5 non-natives: 86.75% - Average of 5 natives: 97.75% - Distributional semantics - ► Classic LSA (Landauer and Dumais 1997): 64.4% - ▶ Padó and Lapata's (2007) dependency-based model: 73.0% - ▶ Distributional memory (Baroni and Lenci 2010): 76.9% - ▶ Rapp's (2004) SVD-based model, lemmatized BNC: 92.5% - ▶ Bullinaria and Levy (2012) carry out aggressive parameter optimization: 100.0% ### And you? > eval.multiple.choice(TOEFL80, M) ## Semantic similarity judgments ▶ Rubenstein and Goodenough (1965) collected similarity ratings for 65 noun pairs from 51 subjects on a 0–4 scale | w_1 | W ₂ | avg. rating | |-------|----------------|-------------| | car | auto | mobile 3.9 | | foc | od fruit | 2.7 | | cor | rd smile | 0.0 | > RG65[seq(0,65,5),] > head(WordSim353) # extension of Rubenstein-Goodenough # Semantic similarity judgments ▶ Rubenstein and Goodenough (1965) collected similarity ratings for 65 noun pairs from 51 subjects on a 0–4 scale | w_1 | <i>W</i> ₂ | avg. rating | | | | |-------|-----------------------|-------------|--|--|--| | car | automobile | 3.9 | | | | | food | fruit | 2.7 | | | | | cord | smile | 0.0 | | | | - DSMs vs. Rubenstein & Goodenough - 1. for each test pair (w_1, w_2) , take vectors \mathbf{w}_1 and \mathbf{w}_2 - 2. measure the distance (e.g. cosine) between \mathbf{w}_1 and \mathbf{w}_2 - measure (Pearson) correlation between vector distances and R&G average judgments (Padó and Lapata 2007) - > RG65[seq(0,65,5),] - > head(WordSim353) # extension of Rubenstein-Goodenough ## Semantic similarity judgments: example #### **RG65: British National Corpus** # Semantic similarity judgments: results #### Results on RG65 task: - ▶ Padó and Lapata's (2007) dependency-based model: 0.62 - ▶ Dependency-based on Web corpus (Herdağdelen *et al.* 2009) - without SVD reduction: 0.69 - ▶ with SVD reduction: 0.80 - ▶ Distributional memory (Baroni and Lenci 2010): 0.82 - ► Salient Semantic Analysis (Hassan and Mihalcea 2011): 0.86 ### And you? # Noun categorization - In categorization tasks, subjects are typically asked to assign experimental items – objects, images, words – to a given category or group items belonging to the same category - categorization requires an understanding of the relationship between the items in a category - Categorization is a basic cognitive operation presupposed by further semantic tasks - inference - ★ if X is a CAR then X is a VEHICLE - compositionality - * $\lambda y : \mathsf{FOOD} \ \lambda x : \mathsf{ANIMATE} \ \left[\mathsf{eat}(x,y) \right]$ - "Chicken-and-egg" problem for relationship of categorization and similarity (cf. Goodman 1972, Medin et al. 1993) ### Noun categorization: the ESSLLI 2008 dataset Dataset of 44 concrete nouns (ESSLLI 2008 Shared Task) - ▶ 24 natural entities - ▶ 15 animals: 7 birds (eagle), 8 ground animals (lion) - ▶ 9 plants: 4 fruits (banana), 5 greens (onion) - 20 artifacts - ▶ 13 tools (hammer), 7 vehicles (car) > ESSLLI08_Nouns[seq(1,40,5),] ### Noun categorization: the ESSLLI 2008 dataset #### Dataset of 44 concrete nouns (ESSLLI 2008 Shared Task) - 24 natural entities - ▶ 15 animals: 7 birds (eagle), 8 ground animals (lion) - ▶ 9 plants: 4 fruits (banana), 5 greens (onion) - 20 artifacts - ▶ 13 tools (hammer), 7 vehicles (car) - DSMs operationalize categorization as a clustering task - 1. for each noun w_i in the dataset, take its vector \mathbf{w}_i - 2. use a clustering method to group similar vectors \mathbf{w}_i - evaluate whether clusters correspond to gold-standard semantic classes (purity, entropy, . . .) - > ESSLLI08_Nouns[seq(1,40,5),] - ▶ majority labels: tools, tools, vehicles, birds, greens, animals - correct: 4/4, 9/10, 6/6, 2/3, 5/10, 7/11 4 D > 4 D > 4 E > 4 E > E 99 C - majority labels: tools, tools, vehicles, birds, greens, animals - ► correct: 4/4, 9/10, 6/6, 2/3, 5/10, 7/11 - purity = 33 correct out of 44 = 75.0% ### ESSLLI 2008 shared task - Clustering experiments with CLUTO (Karypis 2003) - repeated bisection algorithm - ▶ 6-way (birds, ground animals, fruits, greens, tools and vehicles), 3-way (animals, plants and artifacts) and 2-way (natural and artificial entities) clusterings ### ESSLLI 2008 shared task - Clustering experiments with CLUTO (Karypis 2003) - repeated bisection algorithm - ▶ 6-way (birds, ground animals, fruits, greens, tools and vehicles), 3-way (animals, plants and artifacts) and 2-way (natural and artificial entities) clusterings - Quantitative evaluation - entropy whether words from different classes are represented in the same cluster (best = 0) - purity degree to which a cluster contains words from one class only (best = 1) - global score across the three clustering experiments $$\sum_{i=1}^{3} Purity_i - \sum_{i=1}^{3} Entropy_i$$ ### ESSLLI 2008 shared task | model | 6-way | | 3-way | | 2-way | | global | |-------------------|-------|----|-------|----|-------|----|--------| | | Р | Ε | Р | Ε | Р | Ε | | | Katrenko | 89 | 13 | 100 | 0 | 80 | 59 | 197 | | Peirsman+ | 82 | 23 | 84 | 34 | 86 | 55 | 140 | | dep-typed (DM) | 77 | 24 | 79 | 38 | 59 | 97 | 56 | | dep-filtered (DM) | 80 | 28 | 75 | 51 | 61 | 95 | 42 | | window (DM) | 75 | 27 | 68 | 51 | 68 | 89 | 44 | | Peirsman— | 73 | 28 | 71 | 54 | 61 | 96 | 27 | | Shaoul | 41 | 77 | 52 | 84 | 55 | 93 | -106 | ### And you? > eval.clustering(ESSLLIO8_Nouns, M) # uses PAM clustering ### Semantic priming - Hearing/reading a "related" prime facilitates access to a target in various psycholing. tasks (naming, lexical decision, reading) - ▶ the word *pear* is recognized faster if heard/read after *apple* # Semantic priming - Hearing/reading a "related" prime facilitates access to a target in various psycholing. tasks (naming, lexical decision, reading) - the word pear is recognized faster if heard/read after apple - ► Hodgson (1991) single word lexical decision task, 136 prime-target pairs (cf. Padó and Lapata 2007) - ightharpoonup similar amounts of priming found for different semantic relations between primes and targets (pprox 23 pairs per relation) - ★ synonyms (synonym): to dread/to fear - ★ antonyms (antonym): short/tall - ★ coordinates (coord): train/truck - ★ super- and subordinate pairs (supersub): container/bottle - ★ free association pairs (freeass): dove/peace - ★ phrasal associates (phrasacc): vacant/building - DSMs and semantic priming - 1. for each related prime-target pair, measure cosine-based similarity between items (e.g., to dread / to fear) - DSMs and semantic priming - 1. for each related prime-target pair, measure cosine-based similarity between items (e.g., to dread / to fear) - to estimate unrelated primes, take average of cosine-based similarity of target with other primes from same semantic relation (e.g., to value / to fear) - DSMs and semantic priming - for each related prime-target pair, measure cosine-based similarity between items (e.g., to dread / to fear) - to estimate unrelated primes, take average of cosine-based similarity of target with other primes from same semantic relation (e.g., to value / to fear) - 3. similarity between related items should be significantly higher than average similarity between unrelated items - DSMs and semantic priming - 1. for each related prime-target pair, measure cosine-based similarity between items (e.g., to dread / to fear) - 2. to estimate unrelated primes, take average of cosine-based similarity of target with other primes from same semantic relation (e.g., to value / to fear) - 3. similarity between related items should be significantly higher than average similarity between unrelated items - \triangleright Significant effects (p < .01) for all semantic relations - strongest effects for synonyms, antonyms & coordinates - DSMs and semantic priming - for each related prime-target pair, measure cosine-based similarity between items (e.g., to dread / to fear) - to estimate unrelated primes, take average of cosine-based similarity of target with other primes from same semantic relation (e.g., to value / to fear) - 3. similarity between related items should be significantly higher than average similarity between unrelated items - ▶ Significant effects (p < .01) for all semantic relations - strongest effects for synonyms, antonyms & coordinates - Alternative: classification task - ▶ given target and two primes, identify related prime (→ multiple choice like TOEFL) ### Outline #### What is semantic similarity? Semantic similarity and relatedness Attributional similarity & quantitative evaluation #### Parameter evaluation #### Evaluation strategies An example (Bullinaria & Levy 2007, 2012) #### A large scale evaluation study Tasks & parameters Methodology for DSM Evaluation Evaluation on Standard Tasks Summary & conclusion ## DSM evaluation in published studies - One model, many tasks (Padó and Lapata 2007; Baroni and Lenci 2010; Pennington et al. 2014) - ▶ A novel DSM is proposed, with specific features & parameters - ► This DSM is tested on a range of different tasks (e.g. TOEFL, priming, semantic clustering) ## DSM evaluation in published studies - One model, many tasks (Padó and Lapata 2007; Baroni and Lenci 2010; Pennington et al. 2014) - ▶ A novel DSM is proposed, with specific features & parameters - ► This DSM is tested on a range of different tasks (e.g. TOEFL, priming, semantic clustering) - ► Incremental tuning of parameters (Bullinaria and Levy 2007, 2012; Kiela and Clark 2014; Polajnar and Clark 2014) - Several parameters (e.g., scoring measure, distance metric, dimensionality reduction) - ► Many tasks (e.g. TOEFL, semantic & syntactic clustering) - Varying granularity of parameter settings - One parameter (sometimes two) varied at a time, with all other parameters set to fixed values or optimized for each setting - Optimal parameter values are determined sequentially ### Outline #### What is semantic similarity? Semantic similarity and relatedness Attributional similarity & quantitative evaluation #### Parameter evaluation **Evaluation strategies** An example (Bullinaria & Levy 2007, 2012) ### A large scale evaluation study Tasks & parameters Methodology for DSM Evaluation Evaluation on Standard Tasks Summary & conclusion # Bullinaria & Levy (2007, 2012) - One of the first systematic evaluation studies - Test influence of many standard parameter settings - ► frequency weighting + distance measure - co-occurrence window, structured vs. unstructured - corpus type & size, number of feature dimensions - dimensionality reduction (SVD), number of latent dimension # Bullinaria & Levy (2007, 2012) - One of the first systematic evaluation studies - Test influence of many standard parameter settings - ► frequency weighting + distance measure - co-occurrence window, structured vs. unstructured - corpus type & size, number of feature dimensions - dimensionality reduction (SVD), number of latent dimension - In four different evaluation tasks - ▶ TOEFL - distance comparison: related word vs. 10 random words - semantic categorization: nearest-centroid classifier - syntactic categorization (2007) - semantic clustering of nouns (2012) # Bullinaria & Levy (2007, 2012) - One of the first systematic evaluation studies - Test influence of many standard parameter settings - frequency weighting + distance measure - co-occurrence window, structured vs. unstructured - corpus type & size, number of feature dimensions - dimensionality reduction (SVD), number of latent dimension - In four different evaluation tasks - ▶ TOEFL - distance comparison: related word vs. 10 random words - semantic categorization: nearest-centroid classifier - syntactic categorization (2007) - semantic clustering of nouns (2012) - Novel parameters - skipping of first latent dimensions (with highest variance) - ► Caron's (2001) P: power-scaling of singular values # TOEFL results: feature weighting & distance measure (Bullinaria and Levy 2007, p. 516, Fig. 1) British National Corpus (BNC). Vectors not L2-normalized (frequency is L1-normalized). All other parameters optimized for each setting. # TOEFL results: size & type of co-occurrence window (Bullinaria and Levy 2012, p. 893, Fig. 1) ukWaC Web corpus. Positive PMI + cosine (Bullinaria and Levy 2007). Number of feature dimensions optimized for each window size & task. No dimensionality reduction. L&R = structured surface context (left/right). ## TOEFL results: corpus type & size (Bullinaria and Levy 2012, p. 894, Fig. 2) $L\!+\!R$ context of size 1. Average + standard error over equally-sized corpus slices. Other parameter settings unclear. # TOEFL results: feature dimensions & pre-processing (Bullinaria and Levy 2012, p. 895, Fig. 4) ukWaC corpus. L+R context of size 1. Other parameters presumably as above. ## TOEFL results: dimensionality reduction (Bullinaria and Levy 2012, p. 898, Fig. 5) ukWaC corpus. Positive PMI + cosine. Standard = no dimensionality reduction. Other: number of latent dimensions for 12k, 25k and 50k original feature dimensions. # Semantic categorization: dimensionality reduction (Bullinaria and Levy 2012, p. 898, Fig. 5) ukWaC corpus. Positive PMI + cosine. Standard = no dimensionality reduction. Other: number of latent dimensions for 12k, 25k and 50k original feature dimensions. # Combined results: skipping first latent dimensions (Bullinaria and Levy 2012, p. 900, Fig. 7) ukWaC corpus with standard settings. 50k feature dimensions reduced to 5000 latent dimensions. ## TOEFL results: power scaling (Caron's P) (Bullinaria and Levy 2012, p. 900, Fig. 7) ukWaC corpus with standard settings. 50k feature dimensions reduced to 5000 latent dimensions. Neutral value is P=1. ## A (very) large-scale evaluation study (Lapesa and Evert 2014) ### Outline #### What is semantic similarity? Semantic similarity and relatedness Attributional similarity & quantitative evaluation #### Parameter evaluation Evaluation strategies An example (Bullinaria & Levy 2007, 2012) ### A large scale evaluation study ### Tasks & parameters Methodology for DSM Evaluation Evaluation on Standard Tasks Summary & conclusion ### **Tasks** #### 1. Classification ► TOEFL80: multiple-choice classification task (Landauer and Dumais 1997) #### 2. Correlation to Similarity Ratings - ▶ RG65: 65 noun pairs (Rubenstein and Goodenough 1965) - ▶ WordSim353: 351 noun pairs (Finkelstein *et al.* 2002) #### 3. Semantic Clustering - ▶ Battig82: 82 nouns, 10 classes (Van Overschelde et al. 2004) - ▶ AP402: 402 nouns, 21 classes (Almuhareb 2006) - ► ESSLLI08_Nouns: 44 nouns, 6 classes - Mitchell: 60 nouns, 12 classes (Mitchell et al. 2008) ## Distributional models: general features - Term-term distributional semantic models (bag-of-words) - ► Target terms (rows) - vocabulary from Distributional Memory (Baroni and Lenci 2010) + terms from evaluation datasets - 27522 lemma types - Feature terms (columns) - filtered by part-of-speech (nouns, verbs, adjectives, adverbs) - further context selection determined by two model parameters Distributional models were compiled and evaluated using the IMS Corpus Workbench¹, the UCS toolkit² and the wordspace package for R. ²http://www.collocations.de/software.html ¹http://cwb.sf.net/ Building the co-occurrence matrix 1. Source corpus: BNC, Wackypedia, UkWac Our source corpora – standard choices in distributional semantics – differ in both size and quality. Is there a quantity/quality trade-off? - 2. Window (= surface span) - Direction: directed (= structured), undirected - ▶ Size: 1, 2, 4, 8, 16 words We expect those parameters to be crucial as they determine the granularity (direction) and amount (size) of shared context involved in the computation of similarity. Selecting dimensions from the co-occurrence matrix #### 3. Feature selection: - Criterion: frequency, number of non-zero entries - ► Threshold: top n dimensions (n = 5000, 10000, 20000, 50000, 100000) How many context dimensions (words) are needed for DSMs to perform well in specific tasks? Are too many context dimensions detrimental? What is the best selection criterion? Weighting and scaling co-occurrence counts 4. **Feature scoring**: frequency, simple-II, MI, Dice, t-score, z-score, tf.idf Association measures represent an interpretation of co-occurrence frequency, and they emphasize different types of collocations (Evert 2008). Does this have an effect on DSM performance? 5. Transformation: none, logarithmic, square root, sigmoid Transformations reduce the skewness of feature scores. #### Dimensionality reduction - Dimensionality reduction with randomized SVD: - ▶ number of reduced dimensions: 100, 300, 500, 700, 900 - ▶ number of skipped dimensions: 0, 50, 100 Dimensionality reduction is expected to improve semantic representation and make computations more efficient. How does SVD interact with the other parameters? Bullinaria and Levy (2012) report improvements in some tasks (e.g. TOEFL) when the first latent dimensions (with highest variance) are discarded. Does this result generalize to our tasks/datasets? Computation and usage of distances 7. Distance metric: cosine (angular distance), manhattan Both are symmetric, while cognitive processes are often asymmetric - 8. Index of distributional relatedness - distance: dist(a, b) - neighbor rank, calculated differently for different tasks: - **★** TOEFL: backward rank, i.e. rank(b, a) - * Ratings and Clustering: average of logarithmic forward and backward rank, i.e. $(\log \operatorname{rank}(a,b) + \log \operatorname{rank}(b,a))/2$ This parameter allows us to account for asymmetries: rank(b, a) is different from rank(a, b). While cognitively plausible, neighbor rank is computationally expensive: does it improve the performance of DSMs? ### Outline #### What is semantic similarity? Semantic similarity and relatedness Attributional similarity & quantitative evaluation #### Parameter evaluation Evaluation strategies An example (Bullinaria & Levy 2007, 2012) #### A large scale evaluation study Tasks & parameters ### Methodology for DSM Evaluation Evaluation on Standard Tasks Summary & conclusion ## How many models did we end up with? ... and how do we make sense of all those results? - ► We tested all the possible parameter combinations (we will see later that this is crucial for our evaluation methodology) - ► 537600 model runs (33600 in the unreduced setting, 504000 in the reduced setting) - ► The models were generated and evaluated on a large HPC cluster at FAU Erlangen-Nürnberg as well as servers at the University of Stuttgart, within approximately 5 weeks ## Evaluation methodology: linear regression Our proposal for a robust evaluation of DSM parameters - ► Attempts to predict the values of a "dependent" variable from one or more "independent" variables and their combinations - Is used to understand which independent variables are closely related to the dependent variable, and to explore the forms of these relationships ### Example Dependent variable: income Independent variables: gender, age, ethnicity, education level, first letter of the surname (hopefully not significant) ## Evaluation methodology: linear regression Our proposal for a robust evaluation of DSM parameters We use linear models to analyze the influence of different DSM parameters and their combinations on DSM performance - dependent variable = performance (accuracy, correlation coefficient, purity) - independent variables = model parameters (e.g., source corpus, window size, window direction) We want to understand which of the parameters are related to the dependent variable, i.e., we want to find the parameters whose manipulation has the strongest effect on DSM performance. ## DSM evaluation and linear regression Toy example: a $2 \times 2 \times 2$ design | | 147. 1 | 147 L L | • | |--------|-------------|------------------|----------| | Corpus | Window size | Window direction | Accuracy | | ukWaC | 1 | directed | 88 | | ukWaC | 16 | undirected | 92 | | ukWaC | 1 | directed | 91 | | ukWaC | 16 | undirected | 93 | | BNC | 1 | undirected | 80 | | BNC | 16 | undirected | 53 | | BNC | 1 | directed | 72 | | BNC | 16 | directed | 71 | | | | | | $$\begin{split} \textit{Accuracy} &= \beta_0 + \beta_1(\mathsf{corpus}) + \beta_2(\mathsf{window\ size}) + \beta_3(\mathsf{window\ direction}) \\ &+ \beta_4(\mathsf{corpus}:\ \mathsf{window\ size}) + \beta_5(\mathsf{corpus}:\ \mathsf{window\ direction}) + \\ &+ \beta_6(\mathsf{window\ size}:\ \mathsf{window\ direction}) + \epsilon \end{split}$$ ^{*}we're aware that this regression model is almost saturated . . . ## DSM evaluation and linear regression #### Analysis of variance Goal: quantify the impact of a specific parameter (or interaction) on DSM performance, in terms of the proportion of variance explained by the parameter #### Key notions: - ► R² (R squared) - proportion of explained variance, i.e. $$1 - \frac{\text{residual variance of } \epsilon}{\text{variance of dependent variable}}$$ - ► calculated (i) for the full model (→ how well the model exlains the experimental results) as well as (ii) for specific parameters and interactions (quantifying how much they contribute to predictions) - Feature ablation ## DSM evaluation and linear regression Analysis of variance: feature ablation #### Feature ablation Proportion of variance explained by a parameter together with all its interactions, corresponding to the reduction in \mathbb{R}^2 of the linear model fit if this parameter is left out. In our toy model with 3 parameters and all two-way interactions: - Ablation(corpus) = R^2 (corpus) + R^2 (corpus: window size) + R^2 (corpus: window direction) - ▶ Ablation(window size) = R^2 (window size) + R^2 (corpus: window size) + R^2 (window size: window direction) - Ablation(window direction) = R^2 (window direction) + R^2 (corpus: window direction) + R^2 (window size: window direction) #### Outline #### What is semantic similarity? Semantic similarity and relatedness Attributional similarity & quantitative evaluation #### Parameter evaluation Evaluation strategies An example (Bullinaria & Levy 2007, 2012) #### A large scale evaluation study Tasks & parameters Methodology for DSM Evaluation #### Evaluation on Standard Tasks Summary & conclusion #### TOEFL multiple-choice classification task Introducing the task A collection of 80 multiple-choice questions from a synonym task in the Test Of English as a Foreign Language (TOEFL) #### TOEFL dataset ``` Target: consume – Choices: breed, catch, eat, supply ``` Target: constant – Choices: accidental, continuing, instant, rapid Target: concise - Choices: free, positive, powerful, succinct - A classification task - ► If DSMs capture synonymy relations, we expect that the distance between the target and the correct choice will be smaller than to the wrong choices - ► Performance: % accuracy ### TOEFL task: performance #### Unreduced versus Reduced Experiments Min: 25; Max: 87.5; Mean: 63.9 Min: 18.7; Max: 97.4; Mean: 64.4 ### TOEFL task: parameters and explained variance Reduced setting: feature Ablation (model R^2 : 89%) #### TOEFL task: interactions Reduced setting $(R^2 > 0.5)$ | Interaction | Df | R^2 | |-----------------------|----|-------| | score:transformation | 18 | 7.42 | | metric:dim.skip | 2 | 4.44 | | score:metric | 6 | 1.77 | | metric:orig.dim | 4 | 0.98 | | window:transformation | 12 | 0.91 | | corpus:score | 12 | 0.84 | | score:orig.dim | 24 | 0.64 | | metric:n.dim | 4 | 0.63 | TOEFL task: interactions, R^2 #### TOEFL task: Metric, Score, Transformation ### TOEFL task: Metric, Score, Transformation ### TOEFL task: Dimensionality Reduction ### TOEFL task: Dimensionality Reduction ## TOEFL task: Corpus and Number of Feature Dimensions ### TOEFL task: Corpus and Number of Feature Dimensions #### TOEFL task: Window and Relatedness Index #### TOEFL task: Window and Relatedness Index ### TOEFL task: summary #### TOEFL: best setting - Corpus: ukWac - Window: undirected, 2 words - ► Feature selection: top 5000/10000 dimensions, based on frequency - ► Score * Transformation: simple-II * log - ▶ Dimensionality Reduction: 900 latent dimensions, skipping the first 100 - ► Distance Metric: cosine - ► Index of Distributional Relatedness: neighbor rank ## DSMs and similarity ratings Introducing the task #### **RG65** #### 65 pairs, rated from 0 to 4 gem – jewel: 3.94 grin – smile: 3.46 fruit – furnace: 0.05 #### WordSim353 #### 353 pairs, rated from 1 to 10 announcement – news: 7.56 weapon – secret: 6.06 travel – activity: 5.00 - A prediction task - If distributional representation are close to speakers' conceptual representations, we expect to find some correlation between distance in the semantic space and speaker's judgments concerning semantic similarity - Performance: Pearson correlation r ## Similarity ratings: performance on RG65 Min: 0.01; Max: 0.88; Mean 0.59 unreduced Min: 0.00; Max: 0.89; Mean: 0.63 reduced ## Similarity ratings: performance on WordSim353 Min: 0.00; Max: 0.73; Mean: 0.39 unreduced Min: 0.00; Max: 0.73; Mean: 0.43 reduced ### Similarity ratings: parameters and explained variance Reduced setting: feature ablation (full model R^2 : RG65 86%; WS353 90%) #### Similarity ratings: interactions Reduced setting $(R^2 > 0.5)$ | Interaction | Df | RG65 | WordSim353 | |-----------------|----|-------|------------| | score:transf | 18 | 10.28 | 8.66 | | metric:n.dim | 4 | 2.18 | 1.42 | | window:transf | 12 | 1.43 | 1.01 | | corpus:metric | 2 | 1.83 | 0.51 | | score:metric | 6 | 1.91 | 0.59 | | metric:orig.dim | 4 | 1.08 | 0.62 | | corpus:score | 12 | 0.77 | 0.82 | | window:score | 24 | 0.77 | 0.69 | | score:dim.skip | 12 | 0.58 | 0.85 | Similarity ratings: interactions, R^2 ### Similarity ratings: Score, Transformation Rubenstein & Goodenough WordSim-353 ## Similarity ratings: Relatedness Index Relatedness Index 0.55 0.50 0.45 0.35 0.30 0.25 dist rank Rubenstein & Goodenough WordSim-353 # Similarity ratings: Metric, Number of Feature Dimensions Rubenstein & Goodenough WordSim-353 ### Similarity ratings: Number of Latent Dimensions Metric * Number of Reduced Dimensions 0.55 metric cosine manhattan 0.50 0.45 0.40 0.35 0.30 0.25 100 300 500 700 900 Rubenstein & Goodenough WordSim-353 ## Similarity ratings: Number of Skipped Dimensions Partial effect displays (Fox 2003) Rubenstein & Goodenough WordSim-353 50 100 ### Similarity ratings: Window Size, Transformation ## Summing up: Ratings #### Ratings: best setting - Corpus: wacky - Window: undirected, 4 words - ► Feature selection: top 20000/50000 dimensions, based on frequency - ► Score * Transformation: simple-II * log - ▶ Dimensionality Reduction: 300 latent dimensions, skipping the first 50 - ► Distance Metric: cosine - ► Index of Distributional Relatedness: neighbor rank ### DSMs and semantic clustering Introducing the task #### Almuhareb & Poesio #### 402 nouns, 21 classes $day \Longrightarrow TIME$ $kiwi \Longrightarrow FRUIT$ $kitten \Longrightarrow ANIMAL$ $volleyball \implies GAME$ #### ESSLLI categorization task #### 44 nouns. 6 classes $potato \Longrightarrow GREEN$ $hammer \Longrightarrow TOOL$ $car \Longrightarrow VEHICLE$ $peacock \implies BIRD$ #### BATTIG set #### 82 nouns, 10 classes $chicken \Longrightarrow BIRD$ $bear \Longrightarrow LAND MAMMAL$ *pot* ⇒ KITCHENWARE $oak \Longrightarrow TREE$ #### MITCHELL set #### 60 nouns, 12 classes $ant \Longrightarrow INSECT$ $carrot \Longrightarrow VEGETABLE$ $train \Longrightarrow VEHICLE$ $cat \Longrightarrow ANIMAL$ ## DSMs and semantic clustering #### Introducing the task - A categorization task - If distributional representations approximate human conceptual representations, we expect word categorization based on distributional features to produce concept clusters similar to those in the gold standard datasets - Performance: cluster purity - classification accuracy for optimal cluster labelling - percentage of nouns that belong to the majority category within their cluster ## DSMs and semantic clustering #### Introducing the task - A categorization task - If distributional representations approximate human conceptual representations, we expect word categorization based on distributional features to produce concept clusters similar to those in the gold standard datasets - Performance: cluster purity - classification accuracy for optimal cluster labelling - percentage of nouns that belong to the majority category within their cluster - Partitioning around medoids (Kaufman and Rousseeuw 1990) - implemented as pam() in R standard library - ▶ direct comparison → equal to or even better than CLUTO - works with arbitrary dissimilarity matrix #### Semantic clustering: performance Overview: unreduced versus reduced experiments | Dataset | Unreduced | | | Reduced | | | |----------|-----------|------|------|---------|------|------| | Dataset | Min | Max | Mean | Min | Max | Mean | | AP | 0.15 | 0.73 | 0.56 | 0.13 | 0.76 | 0.54 | | BATTIG | 0.28 | 0.99 | 0.77 | 0.23 | 0.99 | 0.78 | | ESSLLI | 0.32 | 0.93 | 0.72 | 0.32 | 0.98 | 0.72 | | MITCHELL | 0.26 | 0.97 | 0.68 | 0.27 | 0.97 | 0.69 | Semantic clustering: summary of performance (purity) ## Semantic clustering: parameters and explained variance Feature ablation (model R^2 – AP: 82%; BATTIG: 77%; ESSLLI 58%; MITCHELL 73%) #### Semantic clustering: interactions Reduced setting $(R^2 > 0.5)$ | Interaction | Df | AP | BATTIG | ESSLLI | MITCHELL | |-----------------------|----|------|--------|--------|----------| | score:transformation | 18 | 7.10 | 7.95 | 7.56 | 11.42 | | window:metric | 4 | 2.22 | 1.26 | 2.97 | 2.72 | | metric:n.dim | 4 | 3.29 | 3.16 | 2.03 | 0.58 | | metric:dim.skip | 2 | 2.25 | 1.54 | 2.77 | 0.86 | | window:transformation | 12 | 2.00 | 2.95 | 0.88 | 2.66 | | corpus:metric | 2 | 1.42 | 2.91 | 2.79 | 1.11 | | corpus:window | 8 | 2.36 | 1.18 | 1.49 | 1.23 | | score:dim.skip | 12 | 0.56 | 1.15 | 0.99 | 1.39 | | window:score | 24 | 0.74 | 0.77 | 0.54 | 0.65 | Clustering datasets: interactions, R^2 ### Semantic clustering: Score, Transformation 0.72 - Score * Transformation 0.72 - transformation 0.64 - frequency tt.idf MII Dice simple-II t-score 2-score Almuhareb & Poesio ESSLLI 2008 ## Semantic clustering: Corpus Almuhareb & Poesio ESSLLI 2008 ### Semantic clustering: Window Size, Metric # Semantic clustering: Metric, Number of Latent Dimensions Partial effect displays (Fox 2003) Almuhareb & Poesio ESSLLI 2008 # Semantic clustering: Number of Skipped Dimensions Partial effect displays (Fox 2003) Almuhareb & Poesio **ESSLLI 2008** ## Semantic clustering: Relatedness Index Partial effect displays (Fox 2003) Almuhareb & Poesio ESSLLI 2008 rank ### Semantic clustering: Number of Feature Dimensions Partial effect displays (Fox 2003) Number of Original Dimensions 0.760.720.685000 10000 20000 50000 100000 Almuhareb & Poesio **ESSLLI 2008** # Summing up: Semantic Clustering #### Clustering: best setting - ► Corpus: wacky - Window: undirected, 4 words - ► Feature selection: top 50000 dimensions, based on frequency - ► Score * Transformation: simple-II * log (or t-score * log) - Dimensionality Reduction: 300/500 latent dimensions, no skipping necessary - Distance Metric: cosine - ▶ Index of Distributional Relatedness: neighbor rank ### Outline #### What is semantic similarity? Semantic similarity and relatedness Attributional similarity & quantitative evaluation #### Parameter evaluation Evaluation strategies An example (Bullinaria & Levy 2007, 2012) #### A large scale evaluation study Tasks & parameters Methodology for DSM Evaluation Evaluation on Standard Tasks Summary & conclusion # Does our evaluation methodology work? - 1. What are the most explanatory parameters? - 2. By inspecting the effect plots, we identified best settings for every dataset: what is the performance of such best settings? Are they close to the best runs in the experiment? - 3. Is it possible to identify a general best setting that performs reasonably well across all tasks? - Parameters with strong effect on DSM performance and homogeneous behavior across tasks and datasets - score - transformation - distance metric - Parameters with strong effect on DSM performance and homogeneous behavior across tasks and datasets - score - transformation - distance metric - Parameters with strong effect on DSM performance, but differences across tasks - dimensionality reduction parameters - window - corpus (to a lesser extent) - Parameters with strong effect on DSM performance and homogeneous behavior across tasks and datasets - score - transformation - distance metric - Parameters with strong effect on DSM performance, but differences across tasks - dimensionality reduction parameters - window - corpus (to a lesser extent) - A less crucial parameter with homogeneous behavior - number of context dimensions - Parameters with strong effect on DSM performance and homogeneous behavior across tasks and datasets - score - transformation - distance metric - Parameters with strong effect on DSM performance, but differences across tasks - dimensionality reduction parameters - window - corpus (to a lesser extent) - A less crucial parameter with homogeneous behavior - number of context dimensions - Parameters that have no or little effect on DSM performance - criterion for context selection - direction of the context window ### How about the index of distributional relatedness? ### Best settings and their performance | dataset | corpus | w | o.dim | sc | tr | m | rel.ind | n.dim | d.sk | best.s | best.m | |----------|--------|---|-------|------|-----|-----|---------|-------|------|--------|--------| | TOEFL | ukwac | 2 | 5k | s-II | log | cos | rank | 900 | 100 | 92.5 | 98.75 | | WS | wacky | 4 | 50k | s-II | log | cos | rank | 300 | 50 | 0.67 | 0.73 | | RG | wacky | 4 | 50k | s-II | log | cos | rank | 300 | 50 | 0.86 | 0.89 | | AP | wacky | 4 | 20k | s-II | log | cos | rank | 300 | 0 | 0.69 | 0.76 | | BATTIG | wacky | 8 | 50k | s-II | log | cos | rank | 500 | 0 | 0.98 | 0.99 | | ESSLLI | wacky | 2 | 20k | t-sc | log | cos | rank | 300 | 0 | 0.77 | 0.98 | | MITCHELL | wacky | 4 | 50k | s-II | log | cos | rank | 500 | 0 | 0.88 | 0.97 | #### Best settings for each dataset w = window size, o.dim = number of feature dimensions, sc = scoring function, tr = transformation, m = metric, d.sk = number of skipped dimensions, best.s = performance of best setting for this dataset, best.m = performance of best run for this dataset # General settings | task | corpus | w | o.dim | sc | tr. | m | rel.ind | n.dim | d.sk | |------------------------------------------|----------------|--------|------------|--------------|------------|------------|--------------|------------|----------------------| | TOEFL
Rating
Clustering
General | wacky
wacky | 4
4 | 50k
50k | s-II
s-II | log
log | cos
cos | rank
rank | 300
500 | 100
50
0
50 | General best settings # General settings | task | corpus | w | o.dim | sc | tr. | m | rel.ind | n.dim | d.sk | |------------|--------|---|-------|------|-----|-----|---------|-------|------| | TOEFL | ukwac | 2 | 5k | s-II | log | cos | rank | 900 | 100 | | Rating | wacky | 4 | 50k | s-II | log | cos | rank | 300 | 50 | | Clustering | wacky | 4 | 50k | s-II | log | cos | rank | 500 | 0 | | General | wacky | 4 | 50k | s-II | log | cos | rank | 500 | 50 | ### General best settings | Task | TOEFL | RATINGS | CLUSTERING | GENERAL | SoA | |----------|-------|---------|------------|---------|-------| | TOEFL | 92.5 | 85.0 | 75.0 | 90.0 | 100.0 | | RG | 0.85 | 0.86 | 0.84 | 0.87 | 0.86 | | WS | 0.60 | 0.67 | 0.64 | 0.68 | 0.81 | | AP402 | 0.60 | 0.66 | 0.67 | 0.67 | 0.79 | | BATTIG | 0.85 | 0.91 | 0.98 | 0.90 | 0.96 | | ESSLLI | 0.70 | 0.77 | 0.80 | 0.77 | 0.91 | | MITCHELL | 0.73 | 0.83 | 0.88 | 0.83 | 0.94 | General best settings – Performance #### Conclusion - Our results show that it is possible to find a single DSM configuration that performs relatively well on every task - The most explanatory parameters show similar behavior across all tasks and datasets - Simple-II * Logarithmic Transformation - Cosine Distance - Parameters that show variation determine the amount and nature of the shared context - Context window: 4 is a good compromise solution - Dimensionality reduction: skipping the first dimensions (but not too many) generally helps - Number of Feature Terms (to a lesser extent) #### Conclusion - Among the source corpora, WaCkypedia appears to be a better option than UkWaC for all tasks but TOEFL - A good trade-off between quantity and quality? - As an index of distributional relatedness, neighbor rank is always better than distance, even if its contribution to model performance varies across tasks - Perhaps some tasks/datasets are less asymmetric than others? - may need to exploit directionality in a more granular way ### References I - Almuhareb, Abdulrahman (2006). Attributes in Lexical Acquisition. Ph.D. thesis, University of Essex. - Baroni, Marco and Lenci, Alessandro (2008). Concepts and properties in word spaces. *Italian Journal of Linguistics*, **20**(1). - Baroni, Marco and Lenci, Alessandro (2010). Distributional Memory: A general framework for corpus-based semantics. Computational Linguistics, 36(4), 673–712. - Budanitsky, Alexander and Hirst, Graeme (2006). Evaluating WordNet-based measures of lexical semantic relatedness. *Computational Linguistics*, **32**(1), 13–47. - Bullinaria, John A. and Levy, Joseph P. (2007). Extracting semantic representations from word co-occurrence statistics: A computational study. *Behavior Research Methods*, 39(3), 510–526. - Bullinaria, John A. and Levy, Joseph P. (2012). Extracting semantic representations from word co-occurrence statistics: Stop-lists, stemming and SVD. Behavior Research Methods, 44(3), 890–907. - Caron, John (2001). Experiments with LSA scoring: Optimal rank and basis. In M. W. Berry (ed.), Computational Information Retrieval, pages 157–169. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. ### References II - Evert, Stefan (2008). Corpora and collocations. In A. Lüdeling and M. Kytö (eds.), Corpus Linguistics. An International Handbook, chapter 58, pages 1212–1248. Mouton de Gruyter, Berlin, New York. - Finkelstein, Lev; Gabrilovich, Evgeniy; Matias, Yossi; Rivlin, Ehud; Solan, Zach; Wolfman, Gadi; Ruppin, Eytan (2002). Placing search in context: The concept revisited. ACM Transactions on Information Systems, 20(1), 116–131. - Fox, John (2003). Effect displays in r for generalised linear models. *Journal of Statistical Software*, **8**(15), 1–27. - Hassan, Samer and Mihalcea, Rada (2011). Semantic relatedness using salient semantic analysis. In Proceedings of the Twenty-fifth AAAI Conference on Artificial Intelligence. - Herdağdelen, Amaç; Erk, Katrin; Baroni, Marco (2009). Measuring semantic relatedness with vector space models and random walks. In *Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language Processing (TextGraphs-4)*, pages 50–53, Suntec, Singapore. - Hodgson, James M. (1991). Informational constraints on pre-lexical priming. Language and Cognitive Processes, 6(3), 169–205. - Kaufman, Leonard and Rousseeuw, Peter J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley and Sons, New York. ### References III - Kiela, Douwe and Clark, Stephen (2014). A systematic study of semantic vector space model parameters. In *Proceedings of the 2nd Workshop on Continuous Vector Space Models and their Compositionality (CVSC)*, pages 21–30, Gothenburg, Sweden. - Landauer, Thomas K. and Dumais, Susan T. (1997). A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge. *Psychological Review*, 104(2), 211–240. - Lapesa, Gabriella and Evert, Stefan (2014). A large scale evaluation of distributional semantic models: Parameters, interactions and model selection. *Transactions of the Association for Computational Linguistics*, **2**, 531–545. - McDonald, Scott and Brew, Chris (2004). A distributional model of semantic context effects in lexical processing. In *Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL '04)*, pages 17–24, Barcelona, Spain. - Mitchell, Tom M.; Shinkareva, Svetlana V.; Carlson, Andrew; Chang, Kai-Min; Malave, Vicente L.; Mason, Robert A.; Just, Marcel Adam (2008). Predicting human brain activity associated with the meanings of nouns. *Science*, **320**, 1191–1195. - Padó, Sebastian and Lapata, Mirella (2007). Dependency-based construction of semantic space models. *Computational Linguistics*, **33**(2), 161–199. ### References IV - Pennington, Jeffrey; Socher, Richard; Manning, Christopher D. (2014). GloVe: Global vectors for word representation. In *Proceedings of EMNLP 2014*. - Polajnar, Tamara and Clark, Stephen (2014). Improving distributional semantic vectors through context selection and normalisation. In *Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics*, pages 230–238, Gothenburg, Sweden. - Rapp, Reinhard (2004). A freely available automatically generated thesaurus of related words. In Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC 2004), pages 395–398. - Rubenstein, Herbert and Goodenough, John B. (1965). Contextual correlates of synonymy. *Communications of the ACM*, **8**(10), 627–633. - Turney, Peter D. (2006). Similarity of semantic relations. *Computational Linguistics*, **32**(3), 379–416. - Van Overschelde, James; Rawson, Katherine; Dunlosky, John (2004). Category norms: An updated and expanded version of the Battig and Montague (1969) norms. *Journal of Memory and Language*, **50**, 289–335.