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Introduction The distributional hypothesis

Meaning & distribution

I “Die Bedeutung eines Wortes liegt in seinem Gebrauch.”
— Ludwig Wittgenstein

+ meaning = use = distribution in language

I “You shall know a word by the company it keeps!”
— J. R. Firth (1957)

+ distribution = collocations = habitual word combinations

I Distributional hypothesis: difference of meaning correlates
with difference of distribution (Zellig Harris 1954)

+ semantic distance

I “What people know when they say that they know a word is
not how to recite its dictionary definition – they know how to
use it [. . . ] in everyday discourse.” (Miller 1986)
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Introduction The distributional hypothesis

What is the meaning of “bardiwac”?
Can we infer meaning from usage?

I He handed her her glass of bardiwac claret .
I Beef dishes are made to complement the bardiwac claret s.
I Nigel staggered to his feet, face flushed from too much

bardiwac claret .
I Malbec, one of the lesser-known bardiwac claret grapes,

responds well to Australia’s sunshine.
I I dined off bread and cheese and this excellent

bardiwac claret .
I The drinks were delicious: blood-red bardiwac claret as well

as light, sweet Rhenish.
+ claret is a heavy red alcoholic beverage made from grapes

All examples from British National Corpus (handpicked and slightly edited).
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Introduction The distributional hypothesis

Word sketch of “cat”
Can we infer meaning from collocations?

https://the.sketchengine.co.uk/
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Introduction The distributional hypothesis

A thought experiment: deciphering hieroglyphs

get sij ius hir iit kil
(knife) naif 51 20 84 0 3 0
(cat) ket 52 58 4 4 6 26

??? dog 115 83 10 42 33 17

(boat) beut 59 39 23 4 0 0

(cup) kap 98 14 6 2 1 0
(pig) pigij 12 17 3 2 9 27

(banana) nana 11 2 2 0 18 0
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Introduction The distributional hypothesis

A thought experiment: deciphering hieroglyphs

get sij ius hir iit kil
(knife) naif 51 20 84 0 3 0
(cat) ket 52 58 4 4 6 26

??? dog 115 83 10 42 33 17

(boat) beut 59 39 23 4 0 0

(cup) kap 98 14 6 2 1 0
(pig) pigij 12 17 3 2 9 27

(banana) nana 11 2 2 0 18 0

sim(dog, naif) = 0.770
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Introduction The distributional hypothesis

A thought experiment: deciphering hieroglyphs

get sij ius hir iit kil
(knife) naif 51 20 84 0 3 0
(cat) ket 52 58 4 4 6 26

??? dog 115 83 10 42 33 17

(boat) beut 59 39 23 4 0 0

(cup) kap 98 14 6 2 1 0
(pig) pigij 12 17 3 2 9 27

(banana) nana 11 2 2 0 18 0

sim(dog, pigij) = 0.939
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Introduction The distributional hypothesis

A thought experiment: deciphering hieroglyphs

get sij ius hir iit kil
(knife) naif 51 20 84 0 3 0
(cat) ket 52 58 4 4 6 26

??? dog 115 83 10 42 33 17

(boat) beut 59 39 23 4 0 0

(cup) kap 98 14 6 2 1 0
(pig) pigij 12 17 3 2 9 27

(banana) nana 11 2 2 0 18 0

sim(dog, ket) = 0.961
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Introduction The distributional hypothesis

English as seen by the computer . . .

get see use hear eat kill
get sij ius hir iit kil

knife naif 51 20 84 0 3 0
cat ket 52 58 4 4 6 26
dog dog 115 83 10 42 33 17
boat beut 59 39 23 4 0 0
cup kap 98 14 6 2 1 0
pig pigij 12 17 3 2 9 27
banana nana 11 2 2 0 18 0

verb-object counts from British National Corpus
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Introduction The distributional hypothesis

Geometric interpretation

I row vector xdog
describes usage of
word dog in the
corpus

I can be seen as
coordinates of point
in n-dimensional
Euclidean space

get see use hear eat kill
knife 51 20 84 0 3 0
cat 52 58 4 4 6 26

dog 115 83 10 42 33 17
boat 59 39 23 4 0 0
cup 98 14 6 2 1 0
pig 12 17 3 2 9 27

banana 11 2 2 0 18 0

co-occurrence matrix M
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Introduction The distributional hypothesis

Geometric interpretation

I row vector xdog
describes usage of
word dog in the
corpus

I can be seen as
coordinates of point
in n-dimensional
Euclidean space

I illustrated for two
dimensions:
get and use

I xdog = (115, 10) ●
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Introduction The distributional hypothesis

Geometric interpretation

I similarity = spatial
proximity
(Euclidean dist.)

I location depends on
frequency of noun
(fdog ≈ 2.7 · fcat)
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Introduction The distributional hypothesis

Geometric interpretation

I vector can also be
understood as
arrow from origin

I direction more
important than
location

I use angle α as
distance measure

I or normalise length
‖xdog‖ of arrow
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Introduction Distributional semantic models

General definition of DSMs

A distributional semantic model (DSM) is a scaled and/or
transformed co-occurrence matrix M, such that each row x
represents the distribution of a target term across contexts.

get see use hear eat kill
knife 0.027 -0.024 0.206 -0.022 -0.044 -0.042
cat 0.031 0.143 -0.243 -0.015 -0.009 0.131
dog -0.026 0.021 -0.212 0.064 0.013 0.014
boat -0.022 0.009 -0.044 -0.040 -0.074 -0.042
cup -0.014 -0.173 -0.249 -0.099 -0.119 -0.042
pig -0.069 0.094 -0.158 0.000 0.094 0.265

banana 0.047 -0.139 -0.104 -0.022 0.267 -0.042

Term = word, lemma, phrase, morpheme, word pair, . . .
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Introduction Distributional semantic models

Building a distributional model

pre-processed corpus with linguistic annotation

define target & feature terms

term-term matrix

type & size of co-occurrence

M

define target terms

term-context matrix

context tokens or types

probabilistic analysis

embedding learned by
neural network

feature scaling
geometric analysis

similarity/distance measure + normalization

dimensionality reduction
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Introduction Distributional semantic models

Nearest neighbours
DSM based on verb-object relations from BNC, reduced to 100 dim. with SVD

Neighbours of trousers (cosine angle):
+ shirt (18.5), blouse (21.9), scarf (23.4), jeans (24.7), skirt

(25.9), sock (26.2), shorts (26.3), jacket (27.8), glove (28.1),
coat (28.8), cloak (28.9), hat (29.1), tunic (29.3), overcoat
(29.4), pants (29.8), helmet (30.4), apron (30.5), robe (30.6),
mask (30.8), tracksuit (31.0), jersey (31.6), shawl (31.6), . . .

Neighbours of rage (cosine angle):
+ anger (28.5), fury (32.5), sadness (37.0), disgust (37.4),

emotion (39.0), jealousy (40.0), grief (40.4), irritation (40.7),
revulsion (40.7), scorn (40.7), panic (40.8), bitterness (41.6),
resentment (41.8), indignation (41.9), excitement (42.0),
hatred (42.5), envy (42.8), disappointment (42.9), . . .
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Introduction Distributional semantic models

Nearest neighbours with similarity graph
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Introduction Distributional semantic models

Semantic maps
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Introduction Distributional semantic models

Clustering
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Introduction Distributional semantic models

Latent “meaning” dimensions
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Introduction Distributional semantic models

Word embeddings

DSM vector as sub-symbolic
meaning representation

I feature vector for machine
learning algorithm

I input for neural network

Context vectors for word
tokens (Schütze 1998)

I bag-of-words approach:
centroid of all context
words in the sentence

I application to WSD
animals

co
m

p
u

te
rs

cat

furry

chase

keyboard

computer

connect

connect the mouse and keyboard 
to the computer

the furry cat 
chased the 

mouse

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial – Part 1 wordspace.collocations.de 22 / 44

Introduction Distributional semantic models

An important distinction

I Distributional model
I captures linguistic distribution of each word in the form of a

high-dimensional numeric vector
I typically (but not necessarily) based on co-occurrence counts
I distributional hypothesis:

distributional similarity/distance ∼ semantic similarity/distance

I Distributed representation
I sub-symbolic representation of words as high-dimensional

numeric vectors
I similarity of vectors usually (but not necessarily) corresponds

to semantic similarity of the words
I hot topic: unsupervised neural word embeddings

+ Distributional model can be used as distributed representation
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Introduction Three famous examples
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Introduction Three famous examples

Latent Semantic Analysis (Landauer and Dumais 1997)

I Corpus: 30,473 articles from Grolier’s Academic American
Encyclopedia (4.6 million words in total)

+ articles were limited to first 2,000 characters
I Word-article frequency matrix for 60,768 words

I row vector shows frequency of word in each article
I Logarithmic frequencies scaled by word entropy
I Reduced to 300 dim. by singular value decomposition (SVD)

I borrowed from LSI (Dumais et al. 1988)
+ central claim: SVD reveals latent semantic features,

not just a data reduction technique
I Evaluated on TOEFL synonym test (80 items)

I LSA model achieved 64.4% correct answers
I also simulation of learning rate based on TOEFL results
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Introduction Three famous examples

Word Space (Schütze 1992, 1993, 1998)

I Corpus: ≈ 60 million words of news messages
I from the New York Times News Service

I Word-word co-occurrence matrix
I 20,000 target words & 2,000 context words as features
I row vector records how often each context word occurs close

to the target word (co-occurrence)
I co-occurrence window: left/right 50 words (Schütze 1998)

or ≈ 1000 characters (Schütze 1992)
I Rows weighted by inverse document frequency (tf.idf)
I Context vector = centroid of word vectors (bag-of-words)

+ goal: determine “meaning” of a context
I Reduced to 100 SVD dimensions (mainly for efficiency)
I Evaluated on unsupervised word sense induction by clustering

of context vectors (for an ambiguous word)
I induced word senses improve information retrieval performance
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Introduction Three famous examples

HAL (Lund and Burgess 1996)

I HAL = Hyperspace Analogue to Language
I Corpus: 160 million words from newsgroup postings
I Word-word co-occurrence matrix

I same 70,000 words used as targets and features
I co-occurrence window of 1 – 10 words

I Separate counts for left and right co-occurrence
I i.e. the context is structured

I In later work, co-occurrences are weighted by (inverse)
distance (Li et al. 2000)

I but no dimensionality reduction
I Applications include construction of semantic vocabulary

maps by multidimensional scaling to 2 dimensions
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Introduction Three famous examples

HAL (Lund and Burgess 1996)
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Introduction Three famous examples

Many parameters . . .

I Enormous range of DSM parameters and applications
I Examples showed three entirely different models, each tuned

to its particular application

å Need overview of DSM parameters & understand their effects
I part 2: The parameters of a DSM
I part 3: Evaluating DSM representations
I part 4: The mathematics of DSMs
I part 5: Understanding distributional semantics

å Distributional semantics is an empirical science
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Getting practical Software and further information

Some applications in computational linguistics
I Unsupervised part-of-speech induction (Schütze 1995)
I Word sense disambiguation (Schütze 1998)
I Query expansion in information retrieval (Grefenstette 1994)
I Synonym tasks & other language tests

(Landauer and Dumais 1997; Turney et al. 2003)
I Thesaurus compilation (Lin 1998; Rapp 2004)
I Ontology & wordnet expansion (Pantel et al. 2009)
I Attachment disambiguation (Pantel and Lin 2000)
I Probabilistic language models (Bengio et al. 2003)
I Sub-symbolic input representation for neural networks
I Many other tasks in computational semantics:

entailment detection, noun compound interpretation,
identification of noncompositional expressions, . . .
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Getting practical Software and further information

Recent conferences and workshops
I 2007: CoSMo Workshop (at Context ’07)
I 2008: ESSLLI Lexical Semantics Workshop & Shared Task,

Special Issue of the Italian Journal of Linguistics
I 2009: GeMS Workshop (EACL 2009), DiSCo Workshop

(CogSci 2009), ESSLLI Advanced Course on DSM
I 2010: 2nd GeMS (ACL 2010), ESSLLI Workshop on

Compositionality and DSM, DSM Tutorial (NAACL 2010),
Special Issue of JNLE on Distributional Lexical Semantics

I 2011: 2nd DiSCo (ACL 2011), 3rd GeMS (EMNLP 2011)
I 2012: DiDaS (at ICSC 2012)
I 2013: CVSC (ACL 2013), TFDS (IWCS 2013), Dagstuhl
I 2014: 2nd CVSC (at EACL 2014)

click on Workshop name to open Web page
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Getting practical Software and further information

Software packages

HiDEx C++ re-implementation of the HAL model
(Lund and Burgess 1996)

SemanticVectors Java scalable architecture based on random
indexing representation

S-Space Java complex object-oriented framework
JoBimText Java UIMA / Hadoop framework
Gensim Python complex framework, focus on paral-

lelization and out-of-core algorithms
DISSECT Python user-friendly, designed for research on

compositional semantics
wordspace R interactive research laboratory, but

scales to real-life data sets

click on package name to open Web page
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Getting practical Software and further information

Further information

I Handouts & other materials available from wordspace wiki at
http://wordspace.collocations.de/

+ based on joint work with Marco Baroni and Alessandro Lenci
I Tutorial is open source (CC), and can be downloaded from

http://r-forge.r-project.org/projects/wordspace/

I Review paper on distributional semantics:
Turney, Peter D. and Pantel, Patrick (2010). From frequency
to meaning: Vector space models of semantics. Journal of
Artificial Intelligence Research, 37, 141–188.

I I should be working on textbook Distributional Semantics for
Synthesis Lectures on HLT (Morgan & Claypool)
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Getting practical R as a (toy) laboratory
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Getting practical R as a (toy) laboratory

Prepare to get your hands dirty . . .

I We will use the statistical programming environment R as a
toy laboratory in this tutorial

+ but one that scales to real-life applications

Software installation
I R version 3.3 or newer from http://www.r-project.org/
I RStudio from http://www.rstudio.com/
I R packages from CRAN (through RStudio menu):

sparsesvd, wordspace
I if you are attending a course, you may also be asked to install

the wordspaceEval package with some non-public data sets
I Data sets from http://www.collocations.de/data/#dsm
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Getting practical R as a (toy) laboratory

First steps in R

Start each session by loading the wordspace package.

> library(wordspace)

The package includes various example data sets, some of which
should look familiar to you.

> DSM_HieroglyphsMatrix
get see use hear eat kill

knife 51 20 84 0 3 0
cat 52 58 4 4 6 26
dog 115 83 10 42 33 17
boat 59 39 23 4 0 0
cup 98 14 6 2 1 0
pig 12 17 3 2 9 27
banana 11 2 2 0 18 0
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Term-term matrix

Term-term matrix records co-occurrence frequencies with feature
terms for each target term

> DSM_TermTermMatrix

bre
ed

tai
l

fee
d

kil
l

im
po
rta

nt
ex
pla

in
lik
ely

cat 83 17 7 37 – 1 –
dog 561 13 30 60 1 2 4

animal 42 10 109 134 13 5 5
time 19 9 29 117 81 34 109

reason 1 – 2 14 68 140 47
cause – 1 – 4 55 34 55
effect – – 1 6 60 35 17
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Term-context matrix

Term-context matrix records frequency of term in each individual
context (e.g. sentence, document, Web page, encyclopaedia article)

> DSM_TermContextMatrix

Fe
lid
ae

Pe
t

Fe
ral

Bl
oa
t

Ph
ilo
so
ph
y

Ka
nt

Ba
ck

pa
in

cat 10 10 7 – – – –
dog – 10 4 11 – – –

animal 2 15 10 2 – – –
time 1 – – – 2 1 –

reason – 1 – – 1 4 1
cause – – – 2 1 2 6
effect – – – 1 – 1 –
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Some basic operations on a DSM matrix

# apply log-transformation to de-skew co-occurrence frequencies
> M <- log2(DSM_HieroglyphsMatrix + 1) # see part 2
> round(M, 3)

# compute semantic distance (cosine similarity)
> pair.distances("dog", "cat", M, convert=FALSE)

dog/cat
0.9610952

# find nearest neighbours
> nearest.neighbours(M, "dog", n=3)

cat pig cup
16.03458 20.08826 31.77784

> plot(nearest.neighbours(M, "dog", n=3, dist.matrix=TRUE))
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