Outline

Outline

Distributional Semantic Models

Part 1: Introduction

 $\label{eq:Stefan Evert} \begin{array}{c} Stefan \ Evert^1 \\ \ with \ Alessandro \ Lenci^2, \ Marco \ Baroni^3 \ and \ Gabriella \ Lapesa^4 \end{array}$

¹Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany ²University of Pisa, Italy ³University of Trento, Italy ⁴University of Stuttgart, Germany

http://wordspace.collocations.de/doku.php/course:start

Copyright © 2009–2016 Evert, Lenci, Baroni & Lapesa | Licensed under CC-by-sa version 3.0

1 / 44

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

ial – Part 1 wordspace.collocations.de

Introduction The distributional hypothesis

Outline

Introduction

The distributional hypothesis

Distributional semantic models Three famous examples

Getting practical

Software and further information R as a (toy) laboratory

Introduction

The distributional hypothesis Distributional semantic models Three famous examples

Getting practical

Software and further information R as a (toy) laboratory

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial – Part 1

wordspace.collocations.de

2 / 44

Introduction The distributional hypothesis

Meaning & distribution

- "Die Bedeutung eines Wortes liegt in seinem Gebrauch."
 Ludwig Wittgenstein
 - \square meaning = use = distribution in language
- "You shall know a word by the company it keeps!"
 J. R. Firth (1957)
 - ${\tt I}{\tt S}{\tt S}$ distribution = collocations = habitual word combinations
- Distributional hypothesis: difference of meaning correlates with difference of distribution (Zellig Harris 1954)
 semantic distance
- "What people know when they say that they know a word is not how to recite its dictionary definition – they know how to use it [...] in everyday discourse." (Miller 1986)

What is the meaning of "bardiwac"?

Can we infer meaning from usage?

- ► He handed her her glass of bardiwac claret .
- Beef dishes are made to complement the bardiwac claret s.
- Nigel staggered to his feet, face flushed from too much bardiwac claret .
- Malbec, one of the lesser-known bardiwac claret grapes, responds well to Australia's sunshine.
- I dined off bread and cheese and this excellent bardiwac claret .
- The drinks were delicious: blood-red bardiwac claret as well as light, sweet Rhenish.
- so claret is a heavy red alcoholic beverage made from grapes

All examples from British National Corpus (handpicked and slightly edited).

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

DSM Tutorial – Part 1 wordspace.collocations.de

Word sketch of "cat"

Can we infer meaning from collocations?

cat	British	National	Corpus	freq	= 5381
-----	---------	----------	--------	------	--------

https://the.sketchengine.co.uk/

object	of 964 2.0	and/or	1056 1.7	pp obj like-p	<u>p 106</u> 28.9	possessor	<u>91</u>	1.9	possession	<u>232</u> 4	.7
skin	<u>9</u> 7.91	dog	<u>208</u> 8.49	grin	<u>11</u> 7.63	Schrödinger	8	10.87	cradle	<u>24</u> 9.9	91
diddle	<u>7</u> 7.85	cat	<u>68</u> 8.01	fight	<mark>9</mark> 4.62	witch	4	6.82	whisker	<mark>9</mark> 8.	92
stroke	<u>10</u> 7.09	kitten	<u>13</u> 8.01	smile	<u>4</u> 4.24	gardener	4	6.0	paw	<u>5</u> 7.	44
torture	5 6.57	fiddle	<mark>9</mark> 7.71	look	<u>11</u> 2.04	Henry	8	4.91	fur	<u>9</u> 7.	14
feed	<u>22</u> 6.34	mouse	<u>29</u> 7.68			neighbour	5	4.28	tray	<u>4</u> 5.:	34
rain	<u>4</u> 6.3	monkey	<u>15</u> 7.55	pp_among-p	<u>17</u> 14.8				tail	<u>5</u> 4.9	91
chase	<u>9</u> 6.27	budgie	<u>4</u> 6.74	pigeon	<u>15</u> 8.66				tongue	<u>5</u> 4.	89
rescue	<u>7</u> 6.15	rabbit	<u>12</u> 6.48						ear	<u>5</u> 4	1.0

subject o	<u>f 842</u> 3.3	adj subject	of 142 2.6	pp obj of	<u>p 324</u> 1.3	modifier	<u>1622</u>	1.2	modifies	<u>610</u> 0.5
purr	<u>7</u> 7.76	asleep	<u>4</u> 6.09	moral	<u>4</u> 7.06	pussy	<u>76</u>	10.42	flap	<u>16</u> 8.39
miaow	<u>5</u> 7.57	alive	<u>4</u> 5.06	breed	<u>6</u> 5.77	Cheshire	<u>45</u>	8.9	litter	<u>15</u> 8.1:
mew	<u>4</u> 7.18	concerned	<u>4</u> 2.94	signal	<u>4</u> 3.89	stray	<u>25</u>	8.7	phobia	<u>5</u> 7.6
jump	<u>20</u> 6.95	black	<u>4</u> 2.36	sight	<u>4</u> 3.77	siamese	17	8.35	burglar	<u>8</u> 7.5
scratch	<u>8</u> 6.84	likely	<u>4</u> 1.96	species	<u>5</u> 3.36	tabby	17	8.35	faeces	<u>6</u> 7.4
leap	<u>10</u> 6.78			game	<mark>9</mark> 3.14	wild	<u>53</u>	7.94	assay	<u>10</u> 7.3
stalk	<u>4</u> 6.56			picture	<u>6</u> 2.99	pet	<u>31</u>	7.92	Hastings	<u>7</u> 6.9
react	<u>4</u> 5.33			death	<u>7</u> 2.71	tom	12	7.8	scan	<u>4</u> 6.5

Introduction The distributional hypothesis

A thought experiment: deciphering hieroglyphs

_			P≬⊡	٩îþ		$\operatorname{AL}_{\operatorname{A}}$	<u>م</u> ا ح
(knife)		51	20	84	0	3	0
(cat)	Ď¢∂a	52	58	4	4	6	26
???	~ f\ 0	115	83	10	42	33	17
(boat)	ا هام	59	39	23	4	0	0
(cup)		98	14	6	2	1	0
(pig)	₀≀⊠≀⊂⊃	12	17	3	2	9	27
(banana)	A	11	2	2	0	18	0

Introduction The distributional hypothesis

A thought experiment: deciphering hieroglyphs

		0 a a	ſ٩⊡	٩۴p	nl⇔	\mathbb{N}_{\Box}	<u>م</u> ار
(knife)		51	20	84	0	3	0
(cat)	500	52	58	4	4	6	26
7777	~ f\ 0	115	83	10	42	33	17
(boat)	مأهك	59	39	23	4	0	0
(cup)		98	14	6	2	1	0
(pig)	₀≀⊠≀⊂	12	17	3	2	9	27
(banana)	A	11	2	2	0	18	0

5 / 44

© Ever

Introduction The distributional hypothesis

A thought experiment: deciphering hieroglyphs

				P۹⊡	٩٩p	nl⇔	\mathbb{N}_{\Box}	<u>م</u> ا ح
((knife)		51	20	84	0	3	0
((cat)	500	52	58	4	4	6	26
آهر	???	<u>~</u> fo	115	83	10	42	33	17
	(boat)	ا ه ا	59	39	23	4	0	0
	(cup)		98	14	6	2	1	0
)<	(pig)	₀≀◙≀⊂⊃	12	17	3	2	9	27
((banana)	A	11	2	2	0	18	0

sim(<u>←</u>fo, lal_) = 0.939

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

wordspace.collocations.de

7 / 44

Introduction The distributional hypothesis

English as seen by the computer ...

		get ⊠æ≏	see N⊡	use ≬î≬	hear ⊓∛⇔	eat ≬≬_	kill ⊸≬ഛ
knife	I (51	20	84	0	3	0
cat	¶ ∮	52	58	4	4	6	26
dog	<u>~</u> fo	115	83	10	42	33	17
boat		59	39	23	4	0	0
cup		98	14	6	2	1	0
pig	□↓ <u>□</u> ↓□	12	17	3	2	9	27
banana .	AA	11	2	2	0	18	0

verb-object counts from British National Corpus

A thought experiment: deciphering hieroglyphs

			۱۹ ص	٩٩p			<u>م</u> ا ح
(knife)	A	51	20	84	0	3	0
(cat)		52	58	4	4	6	26
×???	<u>ح</u>	115	83	10	42	33	17
(boat)	ے اھ	59	39	23	4	0	0
(cup)		98	14	6	2	1	0
(pig)		12	17	3	2	9	27
(banana)	A	11	2	2	0	18	0

sim(**≤** f , , , ,) = 0.961

DSM Tutorial - Part 1

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

wordspace.collocations.de 7 / 44

duction The distributional hypothesis

Geometric interpretation

- row vector x_{dog} describes usage of word *dog* in the corpus
- can be seen as coordinates of point in *n*-dimensional Euclidean space

	get	see	use	hear	eat	kill
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

co-occurrence matrix M

Geometric interpretation

Geometric interpretation

The distributional hypothesis

Geometric interpretation

- vector can also be understood as arrow from origin
- direction more important than location
- \blacktriangleright use angle α as distance measure

nse

0

0

20

Two dimensions of English V-Obj DSM 120 100 knife 8 60 $\alpha = 54.3^{\circ}$ 40 boat 20

The distributional hypothesis Introduction

Geometric interpretation

- ► vector can also be understood as arrow from origin
- direction more important than location
- \blacktriangleright use angle α as distance measure
- ▶ or normalise length $\|\mathbf{x}_{dog}\|$ of arrow

Two dimensions of English V-Obj DSM

60

80

cat

40

dog

120

13 / 44

100

DSM Tutorial – Part 1

Outline

Introduction

Distributional semantic models

General definition of DSMs

A distributional semantic model (DSM) is a scaled and/or transformed co-occurrence matrix M, such that each row x represents the distribution of a target term across contexts.

	get	see	use	hear	eat	kill
knife	0.027	-0.024	0.206	-0.022	-0.044	-0.042
cat	0.031	0.143	-0.243	-0.015	-0.009	0.131
dog	-0.026	0.021	-0.212	0.064	0.013	0.014
boat	-0.022	0.009	-0.044	-0.040	-0.074	-0.042
cup	-0.014	-0.173	-0.249	-0.099	-0.119	-0.042
pig	-0.069	0.094	-0.158	0.000	0.094	0.265
banana	0.047	-0.139	-0.104	-0.022	0.267	-0.042

Term = word, lemma, phrase, morpheme, word pair, ...

Nearest neighbours with similarity graph

Semantic maps

ntroduction Distributional semantic models

Clustering

Introduction Distributional semantic models

Latent "meaning" dimensions

Word embeddings

DSM vector as sub-symbolic meaning representation

- feature vector for machine learning algorithm
- ▶ input for neural network

Context vectors for word tokens (Schütze 1998)

- bag-of-words approach: centroid of all context words in the sentence
- application to WSD

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

connect the mouse and keyboard to the computer keyboard connect furry the furry cat chase chase

wordspace.collocations.de

22 / 44

An important distinction

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

Distributional model

- captures linguistic distribution of each word in the form of a high-dimensional numeric vector
- typically (but not necessarily) based on co-occurrence counts
- distributional hypothesis: distributional similarity/distance ~ semantic similarity/distance

Distributed representation

- sub-symbolic representation of words as high-dimensional numeric vectors
- similarity of vectors usually (but not necessarily) corresponds to semantic similarity of the words
- hot topic: unsupervised neural word embeddings

Solution is the second second

Introduction Three famous examples

DSM Tutorial - Part

Outline

Introduction

The distributional hypothesis Distributional semantic models

Three famous examples

Getting practical

Software and further information R as a (toy) laboratory

Introduction Three famous examples

wordspace.collocations.de

23 / 44

Latent Semantic Analysis (Landauer and Dumais 1997)

- Corpus: 30,473 articles from Grolier's Academic American Encyclopedia (4.6 million words in total)
 - articles were limited to first 2,000 characters
- Word-article frequency matrix for 60,768 words
 - row vector shows frequency of word in each article
- Logarithmic frequencies scaled by word entropy
- Reduced to 300 dim. by singular value decomposition (SVD)
 - ▶ borrowed from LSI (Dumais et al. 1988)
 - central claim: SVD reveals latent semantic features, not just a data reduction technique
- Evaluated on TOEFL synonym test (80 items)
 - LSA model achieved 64.4% correct answers
 - also simulation of learning rate based on TOEFL results

DSM Tutorial - Part 1

Word Space (Schütze 1992, 1993, 1998)

- Corpus: \approx 60 million words of news messages
 - ► from the *New York Times* News Service
- Word-word co-occurrence matrix
 - 20,000 target words & 2,000 context words as features
 - row vector records how often each context word occurs close to the target word (co-occurrence)
 - co-occurrence window: left/right 50 words (Schütze 1998) or ≈ 1000 characters (Schütze 1992)
- Rows weighted by inverse document frequency (tf.idf)
- Context vector = centroid of word vectors (bag-of-words)
 - Image of a context is a context in a context is a context in a context is a context is a context in a context in a context is a context in a context in a context is a context in a context in a context is a context in a context in a context in a context in a context is a context in a context in a context is a context in a con
- Reduced to 100 SVD dimensions (mainly for efficiency)
- Evaluated on unsupervised word sense induction by clustering of context vectors (for an ambiguous word)

DSM Tutorial – Part 1

induced word senses improve information retrieval performance

HAL (Lund and Burgess 1996)

- ► HAL = Hyperspace Analogue to Language
- Corpus: 160 million words from newsgroup postings
- Word-word co-occurrence matrix
 - same 70,000 words used as targets and features
 - ▶ co-occurrence window of 1 10 words
- Separate counts for left and right co-occurrence
 - i.e. the context is *structured*
- In later work, co-occurrences are weighted by (inverse) distance (Li *et al.* 2000)
 - but no dimensionality reduction
- Applications include construction of semantic vocabulary maps by multidimensional scaling to 2 dimensions

DSM Tutorial – Part 1

Introduction Three famous examples

HAL (Lund and Burgess 1996)

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

Figure 2. Multidimensional scalir g of co-occurrence vectors.

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

wordspace.collocations.de

26 / 44

28 / 44

wordspace.collocations.de

27 / 44

Introduction Three famous examples

Many parameters . . .

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

- Enormous range of DSM parameters and applications
- Examples showed three entirely different models, each tuned to its particular application
- ► Need overview of DSM parameters & understand their effects
 - part 2: The parameters of a DSM
 - part 3: Evaluating DSM representations
 - part 4: The mathematics of DSMs
 - part 5: Understanding distributional semantics
- Distributional semantics is an empirical science

Outline

Introduction

The distributional hypothesis Distributional semantic models Three famous examples

Getting practical

Software and further information R as a (toy) laboratory

Some applications in computational linguistics

- Unsupervised part-of-speech induction (Schütze 1995)
- ► Word sense disambiguation (Schütze 1998)
- Query expansion in information retrieval (Grefenstette 1994)
- Synonym tasks & other language tests (Landauer and Dumais 1997; Turney et al. 2003)
- Thesaurus compilation (Lin 1998; Rapp 2004)
- Ontology & wordnet expansion (Pantel et al. 2009)
- Attachment disambiguation (Pantel and Lin 2000)
- ▶ Probabilistic language models (Bengio *et al.* 2003)
- Sub-symbolic input representation for neural networks
- Many other tasks in computational semantics: entailment detection, noun compound interpretation, identification of noncompositional expressions, ...

DSM Tutorial – Part 1

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

wordspace.collocations.de

30 / 44

Getting practical Software and further information

Recent conferences and workshops

- 2007: CoSMo Workshop (at Context '07)
- 2008: ESSLLI Lexical Semantics Workshop & Shared Task, Special Issue of the Italian Journal of Linguistics
- 2009: GeMS Workshop (EACL 2009), DiSCo Workshop (CogSci 2009), ESSLLI Advanced Course on DSM
- 2010: 2nd GeMS (ACL 2010), ESSLLI Workshop on Compositionality and DSM, DSM Tutorial (NAACL 2010), Special Issue of JNLE on Distributional Lexical Semantics
- > 2011: 2nd DiSCo (ACL 2011), 3rd GeMS (EMNLP 2011)
- ▶ 2012: DiDaS (at ICSC 2012)
- ▶ 2013: CVSC (ACL 2013), TFDS (IWCS 2013), Dagstuhl

DSM T

▶ 2014: 2nd CVSC (at EACL 2014)

click on Workshop name to open Web page

Getting practical Software and further information

Software packages

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

HiDEx	C++	re-implementation of the HAL model
		(Lund and Burgess 1996)
SemanticVectors	Java	scalable architecture based on random
		indexing representation
S-Space	Java	complex object-oriented framework
JoBimText	Java	UIMA / Hadoop framework
Gensim	Python	complex framework, focus on paral-
		lelization and out-of-core algorithms
DISSECT	Python	user-friendly, designed for research on
		compositional semantics
wordspace	R	interactive research laboratory, but
		scales to real-life data sets

click on package name to open Web page

wordspace.collocations.de

Further information

- Handouts & other materials available from wordspace wiki at http://wordspace.collocations.de/
 - so based on joint work with Marco Baroni and Alessandro Lenci
- Tutorial is open source (CC), and can be downloaded from http://r-forge.r-project.org/projects/wordspace/
- Review paper on distributional semantics:
 - Turney, Peter D. and Pantel, Patrick (2010). From frequency to meaning: Vector space models of semantics. *Journal of Artificial Intelligence Research*, **37**, 141–188.
- I should be working on textbook *Distributional Semantics* for Synthesis Lectures on HLT (Morgan & Claypool)

DSM Tutorial - Part 1

Introduction

The distributional hypothesis Distributional semantic models Three famous examples

Getting practical

Software and further information R as a (toy) laboratory

Getting practical R as a (toy) laboratory

Prepare to get your hands dirty ...

- ► We will use the statistical programming environment R as a toy laboratory in this tutorial
 - ☞ but one that scales to real-life applications

Software installation

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

- R version 3.3 or newer from http://www.r-project.org/
- RStudio from http://www.rstudio.com/
- R packages from CRAN (through RStudio menu): sparsesvd, wordspace
 - if you are attending a course, you may also be asked to install the wordspaceEval package with some non-public data sets
- Data sets from http://www.collocations.de/data/#dsm

Getting practical R as a (toy) laboratory

DSM Tutorial – Part 1

R as a (toy) laboratory

Getting practical

First steps in R

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

Start each session by loading the wordspace package.

> library(wordspace)

The package includes various example data sets, some of which should look familiar to you.

<pre>> DSM_HieroglyphsMatrix</pre>											
	get	see	use	hear	eat	kill					
knife	51	20	84	0	3	0					
cat	52	58	4	4	6	26					
dog	115	83	10	42	33	17					
boat	59	39	23	4	0	0					
cup	98	14	6	2	1	0					
pig	12	17	3	2	9	27					
banana	11	2	2	0	18	0					

wordspace.collocations.de

wordspace.collocations.de

Term-term matrix

Term-term matrix records co-occurrence frequencies with feature terms for each target term

> DSM_TermTermMatrix

Term-context matrix

Term-context matrix records frequency of term in each individual context (e.g. sentence, document, Web page, encyclopaedia article)

> DSM_TermContextMatrix

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

wordspace.collocations.de 39 / 44

Getting practical R as a (toy) laboratory

DSM Tutorial - Part 1

Some basic operations on a DSM matrix

apply log-transformation to de-skew co-occurrence frequencies > M <- log2(DSM_HieroglyphsMatrix + 1) # see part 2 > round(M, 3)

compute semantic distance (cosine similarity)

> pair.distances("dog", "cat", M, convert=FALSE)
dog/cat

0.9610952

> plot(nearest.neighbours(M, "dog", n=3, dist.matrix=TRUE))

Getting practical R as a (toy) laboratory

References I

- Bengio, Yoshua; Ducharme, Réjean; Vincent, Pascal; Jauvin, Christian (2003). A neural probabilistic language model. *Journal of Machine Learning Research*, 3, 1137–1155.
- Dumais, S. T.; Furnas, G. W.; Landauer, T. K.; Deerwester, S.; Harshman, R. (1988). Using latent semantic analysis to improve access to textual information. In CHI '88: Proceedings of the SIGCHI conference on Human factors in computing systems, pages 281–285.
- Firth, J. R. (1957). A synopsis of linguistic theory 1930–55. In Studies in linguistic analysis, pages 1–32. The Philological Society, Oxford.
- Grefenstette, Gregory (1994). Explorations in Automatic Thesaurus Discovery, volume 278 of Kluwer International Series in Engineering and Computer Science. Springer, Berlin, New York.
- Harris, Zellig (1954). Distributional structure. Word, 10(23), 146-162.
- Landauer, Thomas K. and Dumais, Susan T. (1997). A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge. *Psychological Review*, **104**(2), 211–240.

wordspace.collocations.de

References II

- Li, Ping; Burgess, Curt; Lund, Kevin (2000). The acquisition of word meaning through global lexical co-occurences. In E. V. Clark (ed.), *The Proceedings of the Thirtieth Annual Child Language Research Forum*, pages 167–178. Stanford Linguistics Association.
- Lin, Dekang (1998). Automatic retrieval and clustering of similar words. In Proceedings of the 17th International Conference on Computational Linguistics (COLING-ACL 1998), pages 768–774, Montreal, Canada.
- Lund, Kevin and Burgess, Curt (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments, & Computers, 28(2), 203–208.
- Miller, George A. (1986). Dictionaries in the mind. Language and Cognitive Processes, 1, 171–185.
- Pantel, Patrick and Lin, Dekang (2000). An unsupervised approach to prepositional phrase attachment using contextually similar words. In *Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics*, Hongkong, China.

References III

- Pantel, Patrick; Crestan, Eric; Borkovsky, Arkady; Popescu, Ana-Maria; Vyas, Vishnu (2009). Web-scale distributional similarity and entity set expansion. In *Proceedings* of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 938–947, Singapore.
- Rapp, Reinhard (2004). A freely available automatically generated thesaurus of related words. In Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC 2004), pages 395–398.
- Schütze, Hinrich (1992). Dimensions of meaning. In *Proceedings of Supercomputing* '92, pages 787–796, Minneapolis, MN.
- Schütze, Hinrich (1993). Word space. In Proceedings of Advances in Neural Information Processing Systems 5, pages 895–902, San Mateo, CA.
- Schütze, Hinrich (1995). Distributional part-of-speech tagging. In *Proceedings of the 7th Conference of the European Chapter of the Association for Computational Linguistics (EACL 1995)*, pages 141–148.
- Schütze, Hinrich (1998). Automatic word sense discrimination. Computational Linguistics, 24(1), 97–123.
- Turney, Peter D. and Pantel, Patrick (2010). From frequency to meaning: Vector space models of semantics. *Journal of Artificial Intelligence Research*, **37**, 141–188.

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

wordspace.collocations.de

42 / 44

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

a) DSM Tutorial – Part 1

wordspace.collocations.de 43 / 44

Getting practical R as a (toy) laboratory

References IV

Turney, Peter D.; Littman, Michael L.; Bigham, Jeffrey; Shnayder, Victor (2003). Combining independent modules to solve multiple-choice synonym and analogy problems. In Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP-03), pages 482–489, Borovets, Bulgaria.