Computational Approaches to Collocations

Vienna, July 2002

STS: Mathematical Properties of AMs

by Stefan Evert
Collocation Extraction Procedure

• **source text**, e.g. *Frankfurter Rundschau* corpus (\approx 40 million words)

• **pre-processing**: reformatting/conversion, tokenisation, spelling corrections (?)

• **linguistic annotations**:
 part-of-speech, lemma (citation forms), morphosyntactic features,
 chunk parsing (\rightarrow YAC), full parsing with complex grammar

• **collocation candidates**:
 syntactic patterns based on part-of-speech and chunk annotations,
 or direct extraction from syntax trees

• **large number of candidates**: e.g. Adj+Noun pairs from *Frankfurter Rundschau*:
 $N = 1\,505\,192$ **tokens** (instances) and $V = 537\,743$ **types** (different pairs)
 \rightarrow need for **filtering** or **ranking** techniques
What is a collocation?

• “collocation” can be defined in many different ways, depending on the application

• Manning and Schütze (1999) identify three major criteria used in NLP applications: non-compositionality, non-substitutability, and non-modifiability

• statistical approaches are based on J. R. Firth’s notion of collocations:

> You shall know a word by the company it keeps!

Collocations of a given word are statements of the habitual or customary places of that word . . . The collocation of a word or a ‘piece’ is not to be regarded as mere juxtaposition, it is an order of mutual expectancy.

Firth (1957), A synopsis of linguistic theory 1930–55

• in this STS (and related work) we make further restrictions on the candidate data:

 collocation candidates are lexical arguments of binary syntactic relations
Co-occurrence Frequencies

- The citation from Firth (1957) suggests that collocations are characterised by high co-occurrence frequency.

 → Rank candidates by frequency or apply frequency threshold.

- Initial results are fairly good, but Zipf’s Law leads to low recall:

<table>
<thead>
<tr>
<th>f = 1</th>
<th>f = 2</th>
<th>f = 3</th>
<th>f = 4</th>
<th>f = 5</th>
<th>f = 6</th>
<th>f = 7</th>
<th>f = 8</th>
</tr>
</thead>
<tbody>
<tr>
<td># types</td>
<td>377881</td>
<td>77413</td>
<td>25487</td>
<td>14243</td>
<td>8193</td>
<td>5945</td>
<td>4090</td>
</tr>
</tbody>
</table>

- The 3315 candidates with \(f = 8 \) include beifälliges Nicken (approving nod) and vegetatives Nervensystem (vegetative nervous system), but also obviously random combinations such as erste Partei and schöner Teil.

- \(f(\text{beifällig}) = 16 \) and \(f(\text{Nicken}) = 11 \), but \(f(\text{schön}) = 3594 \) and \(f(\text{Teil}) = 4536 \).

 → Frequency of beifälliges Nicken is higher than expected.
Contingency Table (observed frequencies)

<table>
<thead>
<tr>
<th></th>
<th>$w_2 = \text{Nicken}$</th>
<th>$w_2 \neq \text{Nicken}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1 = \text{beifällig}$</td>
<td>O_{11}</td>
<td>O_{12}</td>
</tr>
<tr>
<td>$w_1 \neq \text{beifällig}$</td>
<td>O_{21}</td>
<td>O_{22}</td>
</tr>
</tbody>
</table>

$$O_{11} + O_{12} + O_{21} + O_{22} = N$$
Contingency Table (observed frequencies)

<table>
<thead>
<tr>
<th></th>
<th>$w_2 = \text{Nicken}$</th>
<th>$w_2 \neq \text{Nicken}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1 = \text{beifällig}$</td>
<td>$O_{11} +$</td>
<td>O_{12}</td>
</tr>
<tr>
<td></td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>$w_1 \neq \text{beifällig}$</td>
<td>$O_{21} +$</td>
<td>O_{22}</td>
</tr>
<tr>
<td></td>
<td>$+$</td>
<td>$+$</td>
</tr>
</tbody>
</table>

$O_{11} + O_{12} + O_{21} + O_{22} = N$
Contingency Table (observed frequencies)

<table>
<thead>
<tr>
<th></th>
<th>$w_2 = \text{Nicken}$</th>
<th>$w_2 \neq \text{Nicken}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1 = \text{beifällig}$</td>
<td>8 + 8</td>
<td>= 16</td>
</tr>
<tr>
<td></td>
<td>+ +</td>
<td></td>
</tr>
<tr>
<td>$w_1 \neq \text{beifällig}$</td>
<td>3 + 1 505 173</td>
<td>= 1 505 176</td>
</tr>
<tr>
<td></td>
<td>= 11</td>
<td>= 1 505 181</td>
</tr>
</tbody>
</table>

$N = 1\,505\,192$ Adj+N pairs (instances) extracted from YAC-parsed *Frankfurter Rundschau* corpus (≈ 40 million tokens)
Expected vs. Observed Frequencies

<table>
<thead>
<tr>
<th></th>
<th>$w_2 = B$</th>
<th>$w_2 \neq B$</th>
<th></th>
<th>$w_2 = B$</th>
<th>$w_2 \neq B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1 = A$</td>
<td>$E_{11} = \frac{R_1 C_1}{N}$</td>
<td>$E_{12} = \frac{R_1 C_2}{N}$</td>
<td>$w_1 = A$</td>
<td>O_{11}</td>
<td>O_{12}</td>
</tr>
<tr>
<td>$w_1 \neq A$</td>
<td>$E_{21} = \frac{R_2 C_1}{N}$</td>
<td>$E_{22} = \frac{R_2 C_2}{N}$</td>
<td>$w_1 \neq A$</td>
<td>O_{21}</td>
<td>O_{22}</td>
</tr>
</tbody>
</table>

expected frequencies

observed frequencies
Mutual Information

• assuming random combinations, the expected co-occurrence frequency is \(E_{11} = \frac{R_1 C_1}{N} \)

• use observed-to-expected ratio as **measure of association** between lexemes

\[
MI = \log \frac{O_{11}}{E_{11}}
\]

this measure has become known as **mutual information** (from information theory)

• however, in applications MI has been shown to overestimate association between low-frequency pairs dramatically

→ measures derived from statistical hypothesis tests correct for “small sample size”

• **definition**: an **association measure** (AM) is a formula which computes an association score for a candidate pair from its contingency table
Corpus as a Random Sample

<table>
<thead>
<tr>
<th>Population</th>
<th>(w_2 = B)</th>
<th>(w_2 \neq B)</th>
<th>Sample</th>
<th>(w_2 = B)</th>
<th>(w_2 \neq B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_1 = A)</td>
<td>(T_{11})</td>
<td>(T_{12})</td>
<td>(w_1 = A)</td>
<td>(O_{11})</td>
<td>(O_{12})</td>
</tr>
<tr>
<td>(w_1 \neq A)</td>
<td>(T_{21})</td>
<td>(T_{22})</td>
<td>(w_1 \neq A)</td>
<td>(O_{21})</td>
<td>(O_{22})</td>
</tr>
</tbody>
</table>

\[
N_0 = T_{11} + T_{12} + T_{21} + T_{22}
\]

\[
N = O_{11} + O_{12} + O_{21} + O_{22}
\]

→ random variables \((X_{11}, X_{12}, X_{21}, X_{22})\) are **multinomially distributed** with sample size \(N\) and probability parameters \(\frac{T_{11}}{N_0}, \frac{T_{12}}{N_0}, \frac{T_{21}}{N_0}, \frac{T_{22}}{N_0}\).
Multinomial Sampling Distribution

- for a random sample of size \(N \) from the population, the random variables \((X_{11}, X_{12}, X_{21}, X_{22})\) are \textbf{multinomially distributed}:

\[
P(X_{11} = k_{11} \land X_{12} = k_{12} \land X_{21} = k_{21} \land X_{22} = k_{22}) = \\
\frac{N!}{k_{11}! k_{12}! k_{21}! k_{22}!} \cdot \left(\frac{T_{11}}{N_0}\right)^{k_{11}} \cdot \left(\frac{T_{12}}{N_0}\right)^{k_{12}} \cdot \left(\frac{T_{21}}{N_0}\right)^{k_{21}} \cdot \left(\frac{T_{22}}{N_0}\right)^{k_{22}}
\]

- each \(X_{ij} \) is \textbf{binomially distributed}:

\[
P(X_{ij} = k) = \binom{N}{k} \cdot \left(\frac{T_{ij}}{N_0}\right)^k \cdot \left(1 - \frac{T_{ij}}{N_0}\right)^{N-k}
\]

but the \(X_{ij} \) are \textbf{not independent} of each other
Relative Frequencies

\[\pi = \frac{T_{11}}{N_0} \]
\[\pi_1 = \frac{T_{11} + T_{12}}{N_0} \]
\[\pi_2 = \frac{T_{11} + T_{21}}{N_0} \]

true relative frequencies (population)

\[p = \frac{O_{11}}{N} \]
\[p_1 = \frac{R_1}{N} = \frac{O_{11} + O_{12}}{N} \]
\[p_2 = \frac{C_1}{N} = \frac{O_{11} + O_{21}}{N} \]

observed relative frequencies (sample)
Statistical Hypothesis Tests

• **null hypothesis** H_0 and **alternative hypothesis** H_1
 are statements about relative frequencies ($=$ probabilities) in the population

• test for **independence**:
 H_0 stipulates that a given candidate pair is a random combination of two lexemes

$$H_0 : \pi = \pi_1 \cdot \pi_2$$

• unknown parameters are estimated from sample: $\pi_1 \approx p_1$ and $\pi_2 \approx p_2$

$$H_0 : \pi = \pi_0 := \pi_1 \cdot \pi_2 \approx p_1 \cdot p_2$$

• test decides whether sample provides sufficient evidence to reject null hypothesis,
 by comparison with sampling distribution under H_0 (written as $P_0(\ldots)$ and $E_0[\ldots]$)
One-Sided and Two-Sided Tests

- **two-sided test** rejects H_0 if true value of π is different from π_0

 $$H_0^{(\text{two-sided})} : \pi \neq \pi_0$$

- **one-sided test** rejects H_0 only if frequency is higher than expected

 $$H_0^{(\text{one-sided})} : \pi > \pi_0$$

- in our situation, one-sided test is appropriate

- some tests are inherently two-sided \rightarrow candidates with $p < \pi_0$ must be excluded

- one-sided tests are slightly less conservative than two-sided tests
 \rightarrow best solution is to use two-sided test and discard candidates with $p < \pi_0$
Exact Hypothesis Tests

- hypothesis test is based on sampling distribution of X_{ij} with expected frequencies

$$E_0[X_{ij}] = E_{ij} = \frac{R_i C_j}{N}$$

- significance (or p-value) of a given sample is the probability of observing a deviation from the expected frequencies that is at least as great as in the sample

- H_0 is rejected if p-value is smaller than a pre-defined significance level α:

$$P_0(X_{11} \geq O_{11}) < \alpha$$

(this test only compares O_{11} to E_{11} → most immediate evidence against H_0)

- low significance level = high degree of certainty = conservative test
 (typical values are $\alpha = 0.05$ (95%), $\alpha = 0.01$ (99%), or $\alpha = 0.001$ (99.9%))
Binomial Test

- correct binomial distribution for X_{11} leads to **binomial test**

\[
\text{binomial} = \sum_{k=O_{11}}^{N} \binom{N}{k} \pi_0^k (1 - \pi_0)^{N-k}
\]

\[
= \sum_{k=O_{11}}^{N} \binom{N}{k} \left(\frac{E_{11}}{N} \right)^k \left(1 - \frac{E_{11}}{N} \right)^{N-k}
\]

\[
= 1 - \sum_{k=0}^{O_{11}-1} \binom{N}{k} \left(\frac{E_{11}}{N} \right)^k \left(1 - \frac{E_{11}}{N} \right)^{N-k}
\]

where $P_0(X_{11} \geq O_{11}) = \sum_{k=O_{11}}^{N} P_0(X_{11} = k)$ is expanded

- computation of exact probabilities for large samples may lead to numerical difficulties
Poisson Test

- for large sample size N and comparatively small E_{11}, the binomial distribution can be approximated with the numerically easier Poisson distribution → **Poisson test**

$$\text{Poisson} = \sum_{k=O_{11}}^{\infty} e^{-E_{11}} \frac{(E_{11})^k}{k!} = 1 - \sum_{k=0}^{O_{11}-1} e^{-E_{11}} \frac{(E_{11})^k}{k!}$$

- no upper limit for X_{11}, but probabilities are vanishingly small when $X_{11} > N$

- small p-values indicate strong rejection of H_0
 → it is convenient to show the negative decadic logarithm: $-\log_{10}(p\text{-value})$

- **convention**: higher AM scores indicate stronger association

- exact p-values for binomial test and Poisson test are still difficult to compute for high-frequency candidates ($O_{11} > 100$, perhaps even lower)
Exact and Asymptotic Tests

• if N and E_{11} are sufficiently large, the binomial (or Poisson) distribution of X_{11} is approximately normal, with parameters $\mu = E_{11}$ and $\sigma^2 \approx E_{11}$

• the standardised z-score of X_{11} approximates a standard normal distribution:

$$z\text{-score} = \frac{O_{11} - E_{11}}{\sqrt{E_{11}}}$$

• unlike the p-value obtained from an exact test, an asymptotic test computes a test statistic, which approximates a known distribution for $N \to \infty$

• the z-score statistic can be converted into a p-value using tables (traditionally) or software (sensibly) for the limiting normal distribution

• for a one-sided asymptotic test like z-score, multiply p-values by 2 to obtain the more conservative behaviour of a two-sided test
Yates’ Continuity Correction

• the z-score measure uses a continuous distribution (normal distribution) to approximate discrete distributions (binomial or Poisson)

• Yates’ continuity correction reduces $|O_{ij} - E_{ij}|$ by 0.5 in order to correct for quantisation error when computing p-values from the continuous approximation:

\[
O_{ij} := O_{ij} - 0.5 \quad \text{if } O_{ij} > E_{ij}
\]

\[
O_{ij} := O_{ij} + 0.5 \quad \text{if } O_{ij} < E_{ij}
\]

• Yates’ correction greatly improves the normal approximation of z-score, but its applicability in other situations is less obvious, and statisticians disagree whether it should be used at all (Motulsky, 1995, Chapter 37)

• in many situations, Yates’ does not lead to a better approximation of the limiting distribution, but it makes the test more conservative (Agresti, 1990, p. 68)
Yates’ Continuity Correction

Normal approximation to binomial distribution
Yates’ Continuity Correction

Normal approximation with Yates’ correction

\[P(X=k) \]

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(X=k)</td>
<td>0.00</td>
<td>0.05</td>
<td>0.10</td>
<td>0.15</td>
<td>0.20</td>
</tr>
</tbody>
</table>
More Asymptotic Tests

• Pearson’s chi-squared test \(X^2 \) (for independence of rows and columns) approximates \(\chi^2 \) distribution with df\(=1 \) (degrees of freedom): 4 squares – 1 constraint – 2 estimates

\[
\text{chi-squared}_i = \sum_{i,j} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}
\]

• when Yates’s continuity correction is applied, the chi-squared formula becomes

\[
\text{chi-squared}_i = \sum_{i,j} \frac{(|O_{ij} - E_{ij}| - 0.5)^2}{E_{ij}}
\]

• the t-score obtained from a \(t \)-test approximates Student’s \(t \) distribution with df\(=N \) \((\approx \text{df}=\infty)\); assumes normal distributions for binary indicator variables \(\rightarrow \) questionable

\[
\text{t-score} = \frac{O_{11} - E_{11}}{\sqrt{O_{11}}}
\]
Indicator Variables

\[I_{11}^{(m)} = \begin{cases} 1 & \text{if } w_1 = A \land w_2 = B \text{ for the } m\text{-th pair in the sample} \\ 0 & \text{otherwise} \end{cases} \]

\[I_{12}^{(m)} = \begin{cases} 1 & \text{if } w_1 = A \land w_2 \neq B \text{ for the } m\text{-th pair in the sample} \\ 0 & \text{otherwise} \end{cases} \]

\[I_{21}^{(m)} = \begin{cases} 1 & \text{if } w_1 \neq A \land w_2 = B \text{ for the } m\text{-th pair in the sample} \\ 0 & \text{otherwise} \end{cases} \]

\[I_{22}^{(m)} = \begin{cases} 1 & \text{if } w_1 \neq A \land w_2 \neq B \text{ for the } m\text{-th pair in the sample} \\ 0 & \text{otherwise} \end{cases} \]

\[X_{ij} = \sum_{m=1}^{N} I_{ij}^{(m)} \]
Homogeneity Tests

\[\rho = \frac{T_{11} + T_{12}}{N_0} \]

\[\rho_1 = \frac{T_{11}}{T_{11} + T_{21}} \]

\[\rho_2 = \frac{T_{12}}{T_{12} + T_{22}} \]

\[r = \frac{R_1}{N} = \frac{O_{11} + O_{12}}{C_1 + C_2} \]

\[r_1 = \frac{O_{11}}{C_1} = \frac{O_{11}}{O_{11} + O_{21}} \]

\[r_2 = \frac{O_{12}}{C_2} = \frac{O_{12}}{O_{12} + O_{22}} \]

population ratios \hspace{2cm} observed ratios

\[H_0 : \rho_1 = \rho_2 = \rho \approx r \]
- Pearson’s chi-squared test for homogeneity is equivalent to the test for independence

\[
\text{chi-squared}_h = \frac{N(O_{11}O_{22} - O_{12}O_{21})^2}{(O_{11} + O_{12})(O_{11} + O_{21})(O_{12} + O_{22})(O_{21} + O_{22})}
\]

- **log-likelihood** \(G^2 = -2 \log \lambda \) (likelihood-ratio test, \(\chi^2 \) distribution with \(df=1 \))

\[
\lambda = \frac{L(O_{11}, C_1, r) \cdot L(O_{12}, C_2, r)}{L(O_{11}, C_1, r_1) \cdot L(O_{12}, C_2, r_2)}
\]

where \(L(k, n, r) = r^k (1 - r)^{n-k} \)

- \(G^2 \) has a much simpler equivalent form (known as the entropy version):

\[
\text{log-likelihood} = 2 \sum_{ij} O_{ij} \log \frac{O_{ij}}{E_{ij}}
\]

(note that log-likelihood is a two-sided test!)
Assessing the Quality of a Test

• most important mathematical criterion for asymptotic tests: How well does the test statistic approximate its limiting distribution?

• Dunning (1993) shows that chi-squared statistic X^2 gives poor approximation of the χ^2 distribution for low-frequency candidates (any $E_{ij} < 5$) and suggests to use G^2

• according to textbooks, Pearson’s X^2 converges more quickly to a χ^2 distribution than the G^2 statistic obtained from a likelihood-ratio test (Agresti, 1990, p. 49) → for small sample sizes, G^2 gives a poor approximation

• but we have a large sample (size = N) with a highly skewed distribution

• Pedersen (1996) recommends Fisher’s exact test for very low frequency pairs (this does not necessarily imply a poor approximation of the χ^2 distribution by G^2, since Fisher’s test is based on a different null hypothesis)
Fisher’s Exact Test

• the null hypothesis of Fisher’s exact test is not a statement about the full population → only the observed sample is considered

• assumes fixed row and column totals (= marginal frequencies)

• under H_0 the fixed numbers of lexemes are randomly combined into pairs, leading to a hypergeometric distribution for X_{11}

$$Fisher = \sum_{k=O_{11}}^{\min\{R_1,C_1\}} \left(\begin{array}{c} C_1 \\ k \end{array} \right) \cdot \left(\begin{array}{c} C_2 \\ R_1-k \end{array} \right) \left(\begin{array}{c} N \\ R_1 \end{array} \right)$$

• the row and column totals in the formula above can be exchanged

• Fisher’s test is one-sided; as an exact test it yields p-values and suffers from numerical complexity
Directions for Future Research

• ongoing research for my PhD project (and joint work with Brigitte Krenn)
• empirical investigations into the mathematical properties of AMs
• know your numbers: the question of numerical accuracy
• do we need yet another association measure?
• statistics (association measures) for fractional counts
• beyond bigrams: n-gram statistics and the influence of categorical variables
The PhD Thingy

• my project: **Understanding Collocation Statistics** (working title)

• current goals

 – restriction to *lexical arguments of binary syntactic relations*

 – a reference including all widely-used AMs, with explanation of their background, connections between AMs, and analysis of their mathematical properties

 – implementation guidelines and details, ensuring numerical accuracy

 – methods and tools for the empirical evaluation of AMs, based on manual annotation (includes techniques for evaluation of random samples to reduce workload)

 – significance tests for (empirical) differences between AMs

 – what factors influence the performance of an AM? (e.g. corpus size, pre-processing, extraction, filtering, type of collocation)

 – examples: Adj+N and PP+V pairs extracted from *Frankfurter Rundschau*

• the companion website (work in progress): http://www.collocations.de/
Short-Term Goals

• put a short HTML version of this presentation on the website at

 http://www.collocations.de/AM/

 which supersedes *On lexical association measures* written in June 2001
 (available from http://www.collocations.de/EK/)

• start a central repository of association measures, including short explanation,
 references, formula in terms of O_{ij} and E_{ij}, and connections to other AMs
 → send input to evert@ims.uni-stuttgart.de

• software for comparative empirical evaluation:
 a collection of Perl scripts and R code called the UCS system
 – no support for bigram extraction → complement to Pedersen’s BSP/NSP
 – early release version will hopefully be available soon (Unix only)
Empirical Investigations

• precise mathematical analysis of the properties of AMs is tedious
 → obtain empirical results (cf. Monte Carlo and randomisation methods)

• method: compute AM scores for a large number of random contingency tables,
 then compare results for different AMs, formulae, frequency layers etc.

• lazy man’s approach: construct mock data set where the O_{ij} vary systematically,
 then use UCS tools to annotate data set with AM scores and compare results

• data set should cover wide frequency ranges, with higher density for small frequencies

• need to choose fixed sample size to avoid having too many candidates
 suggested representative sample size is $N = 1 000 000$

• note that many AMs (practically all asymptotic tests) are size-invariant
Know Your Numbers

• we usually take a cavalier approach towards numerical accuracy — at least I do (i.e., we ignore the issue completely and use standard floating-point arithmetic)

• another example: the cephes library of special mathematical functions → Perl version includes regression tests, which fail miserably on Solaris 2.8

• theory: Fisher’s exact test or binomial test should give most accurate results evaluation: performance of Fisher AM breaks down for highest ranks (a closer look reveals negative probabilities for some candidates!)

• What Every Computer Scientist Should Know About Floating Point Arithmetic (Goldberg, 1991)

• easy: high-precision arithmetic (e.g. GMP library, http://www.swox.com/gmp/)

• more professional: interval arithmetic (Kearfott, 1996) → MuPAD 2.5
Yet Another Association Measure

- Aren't there enough yet? Isn't Fisher’s exact test the best solution, if we can get the numerics right? Is there room for substantial improvement, or are we just twiddling?

- all statistics-based AMs attempt to measure the same quantity: the significance of evidence obtained from the sample against the null hypothesis of independence (random combination of lexemes into pairs)

- is this really the correct translation of Firth’s definition into mathematical terms?

- H_0 is rejected for at least half of the candidates, even at $\alpha = 0.001$

- the difference between high-ranking and low-ranking candidates is just that between a very low probability under H_0 and an incredibly low one

- suggestion: try different alternative $H_1: \pi \gg \pi_0$ (against $H_0: \pi \leq K \cdot \pi_0$)
Statistics for Fractional Counts

- we are now beginning to obtain fractional co-occurrence counts from stochastic grammars (cf. the presentation by Zinsmeister and Heid)

- we can simply insert the fractional counts O_{ij} into AM equations (for all AMs based on asymptotic tests)

- however, there is no a-priori theoretical justification for this approach, which amounts to interpolation between the grid of integer frequencies (unproblematic when $O_{ij} \geq 5$, but interpolation for $O_{11} \ll 1$ is just a wild guess)

- the actual data from the parser are instances of lexeme pairs, each annotated with a probability weight = parser’s confidence in the analysis

- if these confidence estimates were correct, then among ten instances of a pair (A, B) with weight 0.2 each ($\rightarrow O_{11} = 2.0$) there should on average be two correct ones
Statistics for Fractional Counts

• interpret fractional counts as estimates for the number of correct instances → justifies interpolation approach for high-frequency candidates

• a possible interpretation of co-occurrence frequencies $O_{11} < 1$:
 – for a pair (A, B) with $O_{11} = 0.3$, think of an idealised corpus 10 times as large, which contains exactly 10 times as many instances of (A, B) with the same weights
 – in this hypothetical corpus, $O'_{11} = 3.0$, i.e. the parser expects 3 correct instances
 – multiplying the corpus size by 10^k, we can always obtain integer counts
 – relative frequencies p, p_1, p_2 remain the same for the hypothetical larger corpus

• an AM g is size-invariant iff multiplying all observed frequencies with a constant factor does not change the AM scores (or only by a constant factor):

$$g(k \cdot O_{11}, k \cdot O_{12}, k \cdot O_{21}, k \cdot O_{22}) = \gamma(k) \cdot g(O_{11}, O_{12}, O_{21}, O_{22})$$

• surprisingly, most association measures are size-invariant

