Computational Approaches to Collocations
Vienna, July 2002

STS: Mathematical Properties of AMs

by Stefan Evert

Collocation Extraction Procedure

- **source text**, e.g. *Frankfurter Rundschau* corpus (\approx 40 million words)
- **pre-processing**: reformatting/conversion, tokenisation, spelling corrections (?)
- **linguistic annotations**: part-of-speech, lemma (citation forms), morphosyntactic features, chunk parsing (→ YAC), full parsing with complex grammar
- **collocation candidates**: syntactic patterns based on part-of-speech and chunk annotations, or direct extraction from syntax trees
- **large number of candidates**: e.g. Adj+Noun pairs from *Frankfurter Rundschau*: $N = 1\,505\,192$ tokens (instances) and $V = 537\,743$ types (different pairs) → need for filtering or ranking techniques

What is a collocation?

- “collocation” can be defined in many different ways, depending on the application
- Manning and Schütze (1999) identify three major criteria used in NLP applications: non-compositionality, non-substitutability, and non-modifiability
- statistical approaches are based on J. R. Firth’s notion of collocations:

 You shall know a word by the company it keeps!

 Collocations of a given word are statements of the habitual or customary places of that word

 ...The collocation of a word or a ‘piece’ is not to be regarded as mere juxtaposition, it is an order of mutual expectancy.

 Firth (1957), A synopsis of linguistic theory 1930–55

- in this STS (and related work) we make further restrictions on the candidate data:

 collocation candidates are **lexical arguments of binary syntactic relations**

 ![Collocation Extraction Procedure](image)

 - initial results are fairly good, but *Zipf’s Law* leads to low recall:

f	# types
1	377\,881
2	77\,413
3	25\,487
4	14\,243
5	8\,193
6	5\,945
7	4\,090
8	3\,315

 - the 3315 candidates with $f = 8$ include *beifälliges Nicken* (approving nod) and *vegetatives Nervensystem* (vegetative nervous system), but also obviously random combinations such as *erste Partei* and *schöner Teil*

 - f(beifällig) = 16 and f(Nicken) = 11, but f(schön) = 3\,594 and f(Teil) = 4\,536
 → frequency of *beifälliges Nicken* is higher than expected
Contingency Table (observed frequencies)

<table>
<thead>
<tr>
<th></th>
<th>$w_2 = \text{Nicken}$</th>
<th>$w_2 \neq \text{Nicken}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1 = \text{beifällig}$</td>
<td>O_{11}</td>
<td>O_{12}</td>
</tr>
<tr>
<td>$w_1 \neq \text{beifällig}$</td>
<td>O_{21}</td>
<td>O_{22}</td>
</tr>
</tbody>
</table>

$O_{11} + O_{12} + O_{21} + O_{22} = N$

Contingency Table (observed frequencies)

<table>
<thead>
<tr>
<th></th>
<th>$w_2 = \text{Nicken}$</th>
<th>$w_2 \neq \text{Nicken}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1 = \text{beifällig}$</td>
<td>O_{11}</td>
<td>O_{12}</td>
</tr>
<tr>
<td></td>
<td>$O_{11} + O_{12}$ = R_1</td>
<td></td>
</tr>
<tr>
<td>$w_1 \neq \text{beifällig}$</td>
<td>O_{21}</td>
<td>O_{22}</td>
</tr>
<tr>
<td></td>
<td>$O_{21} + O_{22}$ = R_2</td>
<td></td>
</tr>
</tbody>
</table>

$O_{11} + O_{12} + O_{21} + O_{22} = N$

Contingency Table (observed frequencies)

<table>
<thead>
<tr>
<th></th>
<th>$w_2 = \text{Nicken}$</th>
<th>$w_2 \neq \text{Nicken}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1 = \text{beifällig}$</td>
<td>$8 + 8$ = 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ +</td>
<td></td>
</tr>
<tr>
<td>$w_1 \neq \text{beifällig}$</td>
<td>$3 + 1505173$ = 1505176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 11 = 1505181</td>
<td></td>
</tr>
</tbody>
</table>

$N = 1505192$ Adj+N pairs (instances) extracted from YAC-parsed Frankfurter Rundschau corpus (≈ 40 million tokens)

Expected vs. Observed Frequencies

<table>
<thead>
<tr>
<th></th>
<th>$w_2 = B$</th>
<th>$w_2 \neq B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1 = A$</td>
<td>$E_{11} = \frac{R_1 C_1}{N}$</td>
<td>$E_{12} = \frac{R_1 C_2}{N}$</td>
</tr>
<tr>
<td>$w_1 \neq A$</td>
<td>$E_{21} = \frac{R_2 C_1}{N}$</td>
<td>$E_{22} = \frac{R_2 C_2}{N}$</td>
</tr>
</tbody>
</table>

$w_1 = A$ O_{11} O_{12} $w_1 \neq A$ O_{21} O_{22}

expected frequencies observed frequencies
Mutual Information

- assuming random combinations, the expected co-occurrence frequency is $E_{11} = \frac{R_1 C_1}{N}$
- use observed-to-expected ratio as measure of association between lexemes

$$MI = \log \frac{O_{11}}{E_{11}}$$

this measure has become known as mutual information (from information theory)

- however, in applications MI has been shown to overestimate association between low-frequency pairs dramatically

→ measures derived from statistical hypothesis tests correct for “small sample size”

∥ definition: an association measure (AM) is a formula
which computes an association score for a candidate pair from its contingency table

 Corpus as a Random Sample

<table>
<thead>
<tr>
<th>Population</th>
<th>$w_2 = B$</th>
<th>$w_2 \neq B$</th>
<th>Sample</th>
<th>$w_2 = B$</th>
<th>$w_2 \neq B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1 = A$</td>
<td>T_{11}</td>
<td>T_{12}</td>
<td>$w_1 = A$</td>
<td>O_{11}</td>
<td>O_{12}</td>
</tr>
<tr>
<td>$w_1 \neq A$</td>
<td>T_{21}</td>
<td>T_{22}</td>
<td>$w_1 \neq A$</td>
<td>O_{21}</td>
<td>O_{22}</td>
</tr>
</tbody>
</table>

$N_0 = T_{11} + T_{12} + T_{21} + T_{22}$

$N = O_{11} + O_{12} + O_{21} + O_{22}$

→ random variables $(X_{11}, X_{12}, X_{21}, X_{22})$ are multinomially distributed
with sample size N and probability parameters $\frac{T_{11}}{N_0}, \frac{T_{12}}{N_0}, \frac{T_{21}}{N_0}, \frac{T_{22}}{N_0}$

Relative Frequencies

<table>
<thead>
<tr>
<th>$\pi = \frac{T_{11}}{N_0}$</th>
<th>$\pi_1 = \frac{T_{11} + T_{12}}{N_0}$</th>
<th>$\pi_2 = \frac{T_{11} + T_{21}}{N_0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = \frac{O_{11}}{N}$</td>
<td>$p_1 = \frac{R_1}{N}$</td>
<td>$p_2 = \frac{C_1}{N}$</td>
</tr>
</tbody>
</table>

true relative frequencies (population) observed relative frequencies (sample)

Multinomial Sampling Distribution

- for a random sample of size N from the population,
the random variables $(X_{11}, X_{12}, X_{21}, X_{22})$ are multinomially distributed:

$$P(X_{11} = k_{11} \land X_{12} = k_{12} \land X_{21} = k_{21} \land X_{22} = k_{22}) = \frac{N!}{k_{11}! k_{12}! k_{21}! k_{22}!} \left(\frac{T_{11}}{N_0} \right)^{k_{11}} \left(\frac{T_{12}}{N_0} \right)^{k_{12}} \left(\frac{T_{21}}{N_0} \right)^{k_{21}} \left(\frac{T_{22}}{N_0} \right)^{k_{22}}$$

- each X_{ij} is binomially distributed:

$$P(X_{ij} = k) = \binom{N}{k} \left(\frac{T_{ij}}{N_0} \right)^k \left(1 - \frac{T_{ij}}{N_0} \right)^{N-k}$$

but the X_{ij} are not independent of each other
Statistical Hypothesis Tests

- **null hypothesis** H_0 and **alternative hypothesis** H_1
 are statements about relative frequencies (probabilities) in the population

- **test for independence**:
 H_0 stipulates that a given candidate pair is a random combination of two lexemes

 $$H_0 : \pi = \pi_1 \cdot \pi_2$$

- unknown parameters are estimated from sample: $\pi_1 \approx p_1$ and $\pi_2 \approx p_2$

 $$H_0 : \pi = \pi_0 := \pi_1 \cdot \pi_2 \approx p_1 \cdot p_2$$

- test decides whether sample provides sufficient evidence to reject null hypothesis, by comparison with sampling distribution under H_0 (written as $P_0(\ldots)$ and $E_0[\ldots]$)

One-Sided and Two-Sided Tests

- **two-sided test** rejects H_0 if true value of π is different from π_0

 $$H_0^{(\text{two-sided})} : \pi \neq \pi_0$$

- **one-sided test** rejects H_0 only if frequency is higher than expected

 $$H_0^{(\text{one-sided})} : \pi > \pi_0$$

- in our situation, one-sided test is appropriate

- some tests are inherently two-sided --- candidates with $p < \pi_0$ must be excluded

- one-sided tests are slightly less conservative than two-sided tests
 --- best solution is to use two-sided test and discard candidates with $p < \pi_0$

Exact Hypothesis Tests

- hypothesis test is based on **sampling distribution** of X_{ij} with expected frequencies

 $$E_0[X_{ij}] = E_{ij} = R_i C_j \frac{N}{N}$$

- **significance** (or **p-value**) of a given sample is the probability of observing a deviation from the expected frequencies that is at least as great as in the sample

- H_0 is rejected if p-value is smaller than a pre-defined **significance level** α:

 $$P_0(X_{11} \geq O_{11}) < \alpha$$

 (this test only compares O_{11} to E_{11} --- most immediate evidence against H_0)

- low **significance level** = high degree of certainty = conservative test
 (typical values are $\alpha = 0.05$ (95%), $\alpha = 0.01$ (99%), or $\alpha = 0.001$ (99.9%))

Binomial Test

- **correct binomial distribution** for X_{11} leads to **binomial test**

 $$\text{binomial} = \sum_{k=0}^{N} \binom{N}{k} \frac{\pi_0^k (1 - \pi_0)^{N-k}}{N}$$

 $$= \sum_{k=O_{11}}^{N} \binom{N}{k} \left(\frac{E_{11}^k}{N} \right)^k \left(1 - \frac{E_{11}}{N} \right)^{N-k}$$

 $$= 1 - \sum_{k=0}^{O_{11}-1} \binom{N}{k} \left(\frac{E_{11}^k}{N} \right)^k \left(1 - \frac{E_{11}}{N} \right)^{N-k}$$

 where $P_0(X_{11} \geq O_{11}) = \sum_{k=O_{11}}^{N} P_0(X_{11} = k)$ is expanded

- computation of exact probabilities for large samples may lead to numerical difficulties
Poisson Test

- for large sample size N and comparatively small E_{11}, the binomial distribution can be approximated with the numerically easier Poisson distribution → **Poisson test**

$$\text{Poisson} = \sum_{k=O_{11}}^{\infty} e^{-E_{11}} \frac{(E_{11})^k}{k!} = 1 - \sum_{k=0}^{O_{11}-1} e^{-E_{11}} \frac{(E_{11})^k}{k!}$$

- no upper limit for X_{11}, but probabilities are vanishingly small when $X_{11} > N$

- small p-values indicate strong rejection of H_0

→ it is convenient to show the negative decadic logarithm: $-\log_{10}(p\text{-value})$

- **convention**: higher AM scores indicate stronger association

- exact p-values for binomial test and Poisson test are still difficult to compute for high-frequency candidates ($O_{11} > 100$, perhaps even lower)

Yates’ Continuity Correction

- the z-score measure uses a continuous distribution (normal distribution) to approximate discrete distributions (binomial or Poisson)

- Yates’ continuity correction reduces $|O_{ij} - E_{ij}|$ by 0.5 in order to correct for quantisation error when computing p-values from the continuous approximation:

$$O_{ij} := O_{ij} - 0.5 \quad \text{if } O_{ij} > E_{ij}$$

$$O_{ij} := O_{ij} + 0.5 \quad \text{if } O_{ij} < E_{ij}$$

- Yates’ correction greatly improves the normal approximation of z-score, but its applicability in other situations is less obvious, and statisticians disagree whether it should be used at all (Motulsky, 1995, Chapter 37)

- in many situations, Yates’ does not lead to a better approximation of the limiting distribution, but it makes the test more conservative (Agresti, 1990, p. 68)

Exact and Asymptotic Tests

- if N and E_{11} are sufficiently large, the binomial (or Poisson) distribution of X_{11} is approximately **normal**, with parameters $\mu = E_{11}$ and $\sigma^2 \approx E_{11}$

- the standardised z-score of X_{11} approximates a standard normal distribution:

$$z\text{-score} = \frac{O_{11} - E_{11}}{\sqrt{E_{11}}}$$

- unlike the p-value obtained from an **exact test**, an **asymptotic test** computes a test statistic, which approximates a known distribution for $N \to \infty$

- the z-score statistic can be converted into a p-value using tables (traditionally) or software (sensibly) for the limiting normal distribution

- for a one-sided asymptotic test like z-score, multiply p-values by 2 to obtain the more conservative behaviour of a two-sided test
Yates’ Continuity Correction

More Asymptotic Tests

- Pearson’s chi-squared test χ^2 (for independence of rows and columns) approximates χ^2 distribution with df=1 (degrees of freedom): 4 squares – 1 constraint – 2 estimates

$$\text{chi-squared}_i = \sum_{i,j} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

- when Yates’s continuity correction is applied, the chi-squared formula becomes

$$\text{chi-squared}_i = \sum_{i,j} \frac{(|O_{ij} - E_{ij}| - 0.5)^2}{E_{ij}}$$

- the t-score obtained from a t-test approximates Student’s t distribution with df=\(N \) ($\approx df=\infty$); assumes normal distributions for binary indicator variables → questionable

$$t\text{-score} = \frac{O_{11} - E_{11}}{\sqrt{E_{11}}}$$

Indicator Variables

$$f^{(m)}_{11} = \begin{cases} 1 & \text{if } w_1 = A \land w_2 = B \text{ for the } m\text{-th pair in the sample} \\ 0 & \text{otherwise} \end{cases}$$

$$f^{(m)}_{12} = \begin{cases} 1 & \text{if } w_1 = A \land w_2 \neq B \text{ for the } m\text{-th pair in the sample} \\ 0 & \text{otherwise} \end{cases}$$

$$f^{(m)}_{21} = \begin{cases} 1 & \text{if } w_1 \neq A \land w_2 = B \text{ for the } m\text{-th pair in the sample} \\ 0 & \text{otherwise} \end{cases}$$

$$f^{(m)}_{22} = \begin{cases} 1 & \text{if } w_1 \neq A \land w_2 \neq B \text{ for the } m\text{-th pair in the sample} \\ 0 & \text{otherwise} \end{cases}$$

$$X_{ij} = \sum_{m=1}^{N} f^{(m)}_{ij}$$

Homogeneity Tests

$$\rho = \frac{T_{11} + T_{12}}{N_0}$$

$$\rho_1 = \frac{T_{11}}{T_{11} + T_{21}}$$

$$\rho_2 = \frac{T_{12}}{T_{12} + T_{22}}$$

$$r = \frac{R_1}{N} = \frac{O_{11} + O_{12}}{C_1 + C_2}$$

$$r_1 = \frac{O_{11}}{C_1} = \frac{O_{11}}{O_{11} + O_{21}}$$

$$r_2 = \frac{O_{12}}{C_2} = \frac{O_{12}}{O_{12} + O_{22}}$$

$$H_0 : \rho_1 = \rho_2 = \rho \approx r$$
Computational Approaches to Collocations (Vienna, 2002)

ST: MathAM

Assessing the Quality of a Test

- most important mathematical criterion for asymptotic tests:

 How well does the test statistic approximate its limiting distribution?

- Dunning (1993) shows that chi-squared statistic X^2 gives poor approximation of the χ^2 distribution for low-frequency candidates (any $E_{ij} < 5$) and suggests to use G^2

- according to textbooks, Pearson’s X^2 converges more quickly to a χ^2 distribution than the G^2 statistic obtained from a likelihood-ratio test (Agresti, 1990, p. 49) → for small sample sizes, G^2 gives a poor approximation

- but we have a large sample (size = N) with a highly skewed distribution

- Pedersen (1996) recommends **Fisher’s exact test** for very low frequency pairs (this does not necessarily imply a poor approximation of the χ^2 distribution by G^2, since Fisher’s test is based on a different null hypothesis)

Fisher’s Exact Test

- the null hypothesis of Fisher’s exact test is not a statement about the full population → only the observed sample is considered

- assumes fixed row and column totals (= marginal frequencies)

- under H_0 the fixed numbers of lexemes are randomly combined into pairs, leading to a **hypergeometric distribution** for X_{11}

$$Fisher = \min \left\{ \frac{C_1}{k}, \frac{C_2}{N-k} \right\} \sum_{k=O_{11}}^{\min \{R_1, C_1\}} \frac{C_1!}{k!} \frac{C_2!}{N-k!} \frac{R_1!}{R_1-k!}$$

- the row and column totals in the formula above can be exchanged

- Fisher’s test is one-sided; as an exact test it yields p-values and suffers from numerical complexity

Directions for Future Research

- ongoing research for my PhD project (and joint work with Brigitte Krenn)

- empirical investigations into the mathematical properties of AMs

- know your numbers: the question of numerical accuracy

- do we need yet another association measure?

- statistics (association measures) for fractional counts

- beyond bigrams: n-gram statistics and the influence of categorical variables
The PhD Thingy

- my project: Understanding Collocation Statistics (working title)
- current goals
 - restriction to lexical arguments of binary syntactic relations
 - a reference including all widely-used AMs, with explanation of their background, connections between AMs, and analysis of their mathematical properties
 - implementation guidelines and details, ensuring numerical accuracy
 - methods and tools for the empirical evaluation of AMs, based on manual annotation (includes techniques for evaluation of random samples to reduce workload)
 - significance tests for (empirical) differences between AMs
 - what factors influence the performance of an AM?
 (e.g. corpus size, pre-processing, extraction, filtering, type of collocation)
 - examples: Adj+N and PP+V pairs extracted from Frankfurter Rundschau
- the companion website (work in progress): http://www.collocations.de/

Empirical Investigations

- precise mathematical analysis of the properties of AMs is tedious
 → obtain empirical results (cf. Monte Carlo and randomisation methods)

- method: compute AM scores for a large number of random contingency tables, then compare results for different AMs, formulae, frequency layers etc.

- lazy man’s approach: construct mock data set where the O_{ij} vary systematically, then use UCS tools to annotate data set with AM scores and compare results

- data set should cover wide frequency ranges, with higher density for small frequencies

- need to choose fixed sample size to avoid having too many candidates
 suggested representative sample size is $N = 1\,000\,000$

- note that many AMs (practically all asymptotic tests) are size-invariant

Short-Term Goals

- put a short HTML version of this presentation on the website at
 http://www.collocations.de/AM/

 which supersedes On lexical association measures written in June 2001 (available from http://www.collocations.de/EK/)

- start a central repository of association measures, including short explanation, references, formula in terms of O_{ij} and E_{ij}, and connections to other AMs
 → send input to evert@ima.uni-stuttgart.de

- software for comparative empirical evaluation:
 a collection of Perl scripts and R code called the UCS system

 → no support for bigram extraction → complement to Pedersen’s BSP/NSP

 "early release version will hopefully be available soon (Unix only)"

Know Your Numbers

- we usually take a cavalier approach towards numerical accuracy — at least I do
 (i.e., we ignore the issue completely and use standard floating-point arithmetic)

- another example: the cephes library of special mathematical functions
 → Perl version includes regression tests, which fail miserably on Solaris 2.8

- theory: Fisher’s exact test or binomial test should give most accurate results
 evaluation: performance of Fisher AM breaks down for highest ranks
 (a closer look reveals negative probabilities for some candidates!)

- What Every Computer Scientist Should Know About Floating Point Arithmetic (Goldberg, 1991)

- easy: high-precision arithmetic (e.g. GMP library, http://www.swox.com/gmp/)

- more professional: interval arithmetic (Kearfott, 1996) → MuPAD 2.5
Yet Another Association Measure

- Aren’t there enough yet? Isn’t Fisher’s exact test the best solution, if we can get the numerics right? Is there room for substantial improvement, or are we just twiddling?
- all statistics-based AMs attempt to measure the same quantity: the significance of evidence obtained from the sample against the null hypothesis of independence (random combination of lexemes into pairs)
- is this really the correct translation of Firth’s definition into mathematical terms?
- \(H_0 \) is rejected for at least half of the candidates, even at \(\alpha = 0.001 \)
- the difference between high-ranking and low-ranking candidates is just that between a very low probability under \(H_0 \) and an incredibly low one
- suggestion: try different alternative \(H_1 : \pi \gg \pi_0 \) (against \(H_0 : \pi \leq K \cdot \pi_0 \))

Statistics for Fractional Counts

- we are now beginning to obtain fractional co-occurrence counts from stochastic grammars (cf. the presentation by Zinsmeister and Heid)
- we can simply insert the fractional counts \(O_{ij} \) into AM equations (for all AMs based on asymptotic tests)
- however, there is no a-priori theoretical justification for this approach, which amounts to interpolation between the grid of integer frequencies (unproblematic when \(O_{ij} \geq 5 \), but interpolation for \(O_{11} \ll 1 \) is just a wild guess)
- the actual data from the parser are instances of lexeme pairs, each annotated with a probability weight = parser’s confidence in the analysis
- if these confidence estimates were correct, then among ten instances of a pair \((A, B)\) with weight 0.2 each \(\rightarrow O_{11} = 2.0 \) there should on average be two correct ones

Statistics for Fractional Counts

- interpret fractional counts as estimates for the number of correct instances it justifies interpolation approach for high-frequency candidates
- a possible interpretation of co-occurrence frequencies \(O_{11} < 1 \):
 - for a pair \((A, B)\) with \(O_{11} = 0.3 \), think of an idealised corpus 10 times as large, which contains exactly 10 times as many instances of \((A, B)\) with the same weights
 - in this hypothetical corpus, \(O'_{11} = 3.0 \), i.e. the parser expects 3 correct instances
 - multiplying the corpus size by \(10^k \), we can always obtain integer counts
 - relative frequencies \(p, p_1, p_2 \) remain the same for the hypothetical larger corpus
- an AM \(g \) is size-invariant iff multiplying all observed frequencies with a constant factor does not change the AM scores (or only by a constant factor):
 \[g(k \cdot O_{11}, k \cdot O_{12}, k \cdot O_{21}, k \cdot O_{22}) = g(O_{11}, O_{12}, O_{21}, O_{22}) \]
- surprisingly, most association measures are size-invariant